ON THE SOLUTION OF THE RIEMANN PROBLEM WITH
GENERAL STEP DATA FOR AN EXTENDED
CLASS OF HYPERBOLIC SYSTEMS

J. A. Smoller

1. The Riemann problem for a quasi-linear hyperbolic system of equations is a
specific initial-value problem, namely

Uy (x <0),
U(0, x) =
U, (x>0).

Here F is a vector-valued function of U=U(t, x) € E" (n > 2, -o <x < o, t>0),
and Uy and U, are constant vectors. The assumption that the system is hyperbolic
means that the matrix dF(U) has real and distinct eigenvalues for all values of the
argument U in question. By a solution of this problem we mean a function

U = U(x/t) consisting of n+ 1 constant states separated by shock and rarefaction
waves, satisfying the Rankine-Hugoniot condition across shocks, and satisfying the
equation in the usual sense at all other points (see [5] for the definitions of these
concepts). Such a solution is necessarily a weak solution in the sense of the theory
of distributions.

In 1957, P. Lax [5] solved the Riemann problem for the case where Uy and U,
are sufficiently close. In this paper, we shall allow Uy and U, to be arbitrary con-
stant vectors, but we shall restrict ourselves to the case n = 2 for the same sys-
tems that were studied in [2]. For these systems we shall show that at each point
Uy in the plane there originate four smooth curves that divide the plane into four un-
bounded regions, with the property that if U, lies in three of these regions, then the
Riemann problem can be solved without any additional assumptions. We shall then
show by an example (due essentially to J. L. Johnson [1], who also considered certain
special cases of our results) that our assumptions are not strong enough to solve all
Riemann problems if U, lies in the fourth region. However, by putting additional
assumptions on F, we can guarantee that all Riemann problems are solvable. Also,
by generalizing the notion of solution, we are able to solve all Riemann problems
without any additional restriction on F.

2. In the case n = 2, we can write our system in the form

(1) up+f(u, v)x = 0, vit+gl, v)x = 0,
with initial data

Uy

]

(HQ,VQ) (X<0),
(2) (u(0, x), v(0, x)) =
U, = (u,, v,) (x> 0).

Received September 23, 1968.
This research was supported in part by N. S. F. grant No. 01048, and in part by
the Battelle Memorial Institute.

201



202 J. A. SMOLLER

We denote by F the smooth mapping (f, g) from EZ into EZ, and we let £; and r;
(i =1, 2), be the left and right eigenvectors of dF, for the eigenvalues A; (A1 < Ap).
We shall require that f,,g, > 0 in EZ, and we can thus assume that f, < 0 and

gy < 0. (This implies that the system (1) is hyperbolic.) Throughout the paper, we
shall assume that the system (1) is genuinely nonlinear and satisfies the shock inter-
action conditions (see [2]) in E2. As was shown in [2], these two conditions can be
written as £;d% F(rj, r;) > 0 (i, j = 1, 2) under the normalizations dxj(r;) > 0,

2T, >0 (i=1, 2).

Let Up = (uy, vy) be any point in E2. Under our assumptions, it can be shown,
by the methods of [2 , that there exist four smooth curves originating at Uy and
representing the states that can be connected to Uy by shock waves and rarefaction
waves of both characteristic families. These can be written as
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s1(u; Uy) (u<uy),

where the equations v = si(u; Uy) represent the shock-wave curves and the equations
v = wi(u; Uy) represent the rarefaction-wave curves. It was shown in [2] that the
curve v = wi(u; Uy) is a smooth, increasing, concave curve (that is, dw; /du > 0
and d2w; /du? < 0), so that the curve is defined for all u>uy. Similarly, it was
also shown in [2] that the curve v = sa(u; Up_) is a decreasing convex curve and is
also defined for all u>uy. Analogously, the curve u= wp(u; Uy) is decreasing and
convex, and the curve v =s;(u; U 2) is increasing and concave. We define

S; = {(w, v): v = s1(u; Up), uuy},
S, = {(u, v): v = sp(u; Up), u>u,},
Wi = {(u, v): v = wi(u; Up),u>up}t,

Wy = {(u, v): v = walu; Up), u<uy} .
These sets divide the uv-plane into four regions illustrated in Figure 1. To solve
the Riemann problem in the large
w W, means, given Uy = (uy, vy), to
2 v solve (1) for each point
v U, = (uy, vy) in EZ. It is some-
what surprising that without any ad-
Uy ditional assumptions on F, we can
I I u  glready solve the Riemann problem
if U, is in regions I, II, or II.

I THEOREM 1. Let Uy = (ug, vy)
) S, be any point in B2, If U, = (uy, vy)
is any point in regions 1, II, ov III,
then the Riemann problem (1)-(2)is

Fi 1.
tgure solvable.

Proof. It was shown in [2] that if U, is in region I, then the problem (1)-(2) is
solvable. Suppose U, is in region II. We consider two cases: u, > uy and u, <uy.
If ur > ug, let A denote the vertical line u = ur, and consider the mapping ¢ from
S, to A given by
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¢: (u7 Sl(u; Uﬁ)) - (ur) Sz(ur; u, Sl(u; Uﬂ))) .

Since the curves v = s2(u; U) (U € S;) have negative slopes, they cut A trans-
versally, and thus ¢ is continuous. Now, ¢(Uy) is not below U, on A, and further-
more, there exists a u such that s;(u; Uﬂ) <v,, so that ¢(u, s)(1; Uy)) is below U,
on A. Since the portion of S; between Uy and s(u; Uﬂ) is connected, it follows that
there exists a point U on S; for which ¢(U) = U,.. The solution to the Riemann
problem is now obvious; namely, we go from the constant state U, to the constant
state U by a 1-shock, and then from U to the constant state U, by a 2-shock.

If u,. <uy, we again let A denote the line u = u,, which now cuts S;. Choose u
so that s;(u; Uy) <v,. Then the 2-shock curve originating at s1(3i;-Up) meets A at
a point (u, v) (v <v,). Let K denote the compact region bounded by this curve, by
A, and by S;. Since the slopes of the 2-shock curves are continuous, they must be
bounded in K. Hence there exists a u' for which the 2-shock curve originating at
(u', s;(u'; U,)) cuts A above U,, and as before, there exists a point U on S; for
which the 2-shock curve originating at U passes through U,. The solution of the
problem (1)-(2) now follows as in the previous case.

Finally, we consider the case where U, lies in region III. In this case we solve
the initial-value problem

d
a—:’; = ay(u, v), viu,) = v,

and we consider the solution in u > u,. Since az <0 and (a2)y+az2(az)y > 0 (see
[2] ), we see that this solution curve is decreasing and convex, for all u>u,. Now
the family of curves W, is governed by the same differential equation as above, so
that by standard theorems in ordinary differential equations, the curve v = wy(u; U;)
(u>u,) must cut S; in a point U. Hence, the problem (1)-(2) is also solvable in
this case. The solution consists of going from Uy to U by a 1-shock and from U to
U, by a 2-rarefaction wave. This completes the proof of the theorem.

In view of this theorem, it remains only to consider the case where U, is in re-
gion IV. We shall now show, by means of an example, that our problem (1)-(2) is not
always solvable if U, is in region IV. Consider the system

(3) Uu-vy, =0, v.+(e?/2), =0.
It is easy to verify that this system is hyperbolic and genuinely nonlinear and that.it
satisfies the shock-interaction conditions in E2. Let U 9= (0, 0), and let

Uy = (0, 2k). We assert that for k > 1, the system (3) with this initial-datum is not
solvable. Indeed, the Riemann invariants of the system (3) are given by

u
v+ S e ¥dx,
so that the equation for W; is

u
v = S e ¥dx =1-e™Y;
(o}

similarly, the equation for the 2-rarefaction wave curve through U is given by
v =2k - 1+ e~%. Therefore these curves never meet if k > 1. Thus the Riemann
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problem is not solvable for all data. Note that if k < 1, then these curves do meet
and we can therefore solve the Riemann problem.

This example gives the clue to the general case. Namely, we must find condi-
tions on f and g under which none of the curves v = wi(u; Uy) (u> uy) has a hori-
zontal asymptote. Of course, it is easy to see that we could equally well solve the
Riemann problem if none of the curves v = w,(u; Uy) (u> uy) has a horizontal
asymptote. Note that in a situation where both families of curves have horizontal
asymptotes (as in the above example), we can solve certain Riemann problems where
Ur is in region IV. Namely, it is sufficient that the points Uy and U, be sufficiently
close so that the curve v = w (u; Up) (u>uy) meets v = wa(u; Up) (u>uy).

THEOREM 2. The Riemann problem (1)-(2) is solvable in the lavge for all U,
and Uy if and only if for each triple of numbers uo, vi, vz (v > v)) the curves
v =w;(u; ug, vq) and v = wy(u; ug, vy) intersect.

Proof. Suppose that the condition is satisfied, and let Uy and U, be any two
points in E2. In view of Theorem 1, it suffices to consider the case where U, is in
region IV. Suppose first that u, > uy, and consider the curves

v =wp(u; U) (W>uy) and v = wily; uy, wifur; Up) (u>uy).

By hypothesis, these curves meet at a point U = (4, ¥) with @ > u,., so that we can
solve the Riemann problem by going from the constant state Uy to the constant state
U by a 1-rarefaction wave and then going from U to the constant state U, by a 2-
rarefaction wave. If u,. <uy, then the curve v = wz(u; ug, vy) (u>uy) meets Wj;
hence the curve v = Wx(u; U,) (u> u,) also meets W;. Therefore the Riemann
problem is solvable also in this case, so that the condition is sufficient. The neces-
sity is obvious.

The next theorem gives a sufficient condition for the solvability of the Riemann
problem. :

THEOREM 3. (a) If Uy = (ug, vy) is a point in E2 and the curve v = w(u; Uy)
(u>uy) is not asymptotic to any line v = const., then the problem (1)-(2) is solv-
able for each U, € EZ.

(b) Suppose that Uy = (uy, vy) is a point in EZ2, that U, = (uy, uy) is a point in
E?, and that the curve v = wa(u; Uy) (u>uy) is not asymptotic to any line v = const.
Then the problem (1)-(2) is solvable.

Proof. We shall first prove (2). Let Uy = (uy, vy) be any point in E4. Again
using Theorem 1, we need only consider the case where Uy is in regionIV. Let A
be the line v = vy, which by hypothesis intersects W1 . It is clear that A also in-
tersects W2 . Since the region enclosed by A, W1, and W2 is compact, and since
the curves v = wa(u; U') (u < u') with U' = (u', v') on W; have negative slopes, an
argument similar to that in the proof of Theorem 1 shows that there exists a point U
on W; for which vy = w2{ur; U). The solution of the Riemann problem now follows
as before. To prove (b), it again suffices to consider the case when U, is in region
IV. Then, by hypothesis, the curve v = wy(u; Uy) (u > u,) meets W;, and hence the
Riemann problem is again solvable. This completes the proof of the theorem.

Let R and S be the classical Riemann-invariants of the system (1), (see [2]). It

S]] S Q 2
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the mapping (u, v) — (R, S) = (R(u, v), S(u, v)) is locally one-to-one. However, in
view of the monotonicity of the curves W) and W2 (where W] and W2 are repre-
sented by R = const. and by S = const.), we can easily see that this mapping is also
globally one-to-one. It is interesting to note that a necessary and sufficient condi-
tion for the solvability of all Riemann problems (1)-(2) is that this mapping is also
onto.

THEOREM 4. The Riemann problem (1)-(2) is solvable for every paiv Uy, Uy
if and only if the mapping (u, v) — (R, S) is onto.

Proof. Suppose the mapping is onto. As before, it suffices to consider the case
where Uy is in region IV. Then Ur lies on a curve S = Sg, Uy lies on a curve
R = Ry, and there is a point (ug, vg) such that Rg = R(ug, vg) and Sp = S(ug, vo).
Thus the curves R =Rg and S = Sg meet at (ug, vp), and the Riemann problem is
solvable. Conversely, if all Riemann problems are solvable, let (Rg, Sg) be an
arbitrary point. The curves R = Rg and S = Sg meet at a point (ug, vg) (otherwise
not all Riemann problems would be solvable), so that Ry = R(ug, vg) and
Sg = S(ug, vg), and the mapping is onto.

We shall now give some precise and easily verified conditions under which the
Riemann problem (1)-(2) is always solvable. We recall that the differential equations
of W; and W; are

v _ dv _
i aj(u, v) and el az2(u, v),

where a; >0, a; <0, (aj)y+aijlay)y <0, and (ap),+az(ay), > 0.

THEOREM 5. The Riemann problem (1)-(2) is solvabdle for all Uy and U, if
one of the following six conditions is satisfied.

(a) There exists a ug such that either

(4) { aitx, seax =+
ug

Jor every smooth ¢(x) with ¢'> 0 and ¢" <0, or else

(47 [ aym veax = -
]
for every smooth Y(x) with ' <0 and ¢" > 0.

(b) There exists a uq such that either

o0

(5) S aj(x, c)dx = +  for every c
ug

and (ay), <0, or else

o0

S ay(x, c)dx = - for every c
up

and (a,), < 0.
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SS (aq),dudv

D
bounded by any line v = const. and any increasing concave curve asymptotic to that

line, or else (4') holds, and l SS (az)vdudvl < w for every region D' bounded by
D'

(c) Either (a1)y> 0, or (az), <O.

(d) Either condition (4) holds, and < o for every vegion D

any line v = const. and any decreasing convex curve asympiolic to that line.

(e) Either ay(u, v) > a(lu[ )B(v), where B(v) is continuous and nonnegative and
a(r) > 0 for r > 0, and there exists a ugy such that

o0
5 a(r)dr = 4o
ug

or else -aj(u, v) > oz(]ul)B(v), where o and B satisfy the same hypotheses as
above.

(f) Suppose that R and S are the Riemann invariants of the system (1), where
R = const. represents the curves Wi and S = const. represents the curves Wy, and
that u = ¢(R, S), v = Y(R, S); then for all Ry and Sg either

0

[ aie®o, 8), WRo, Nas = +=, orese | a (4R, So), YR, S)dR = - .
So Ro

Proof. We use Theorem 3, and therefore we need only show that we can rule out
horizontal asymptotes. We shall only prove the first half of each condition. It will
follow that the curves W) have no horizontal asymptotes. The other conditions im-
ply that the curves W, have no horizontal asymptotes, and the proofs are similar.

First note that we can write the equation for W; as

u
vV =vy+ S a(x, wilx; Ug))dx  (u>uy),
u
[

so that W; has no horizontal asymptote if

o0
S ay(x, wilx; Up))dx = +e.
Y

In terms of the Riemann invariants R and S,

(6) §, aalotro, 9), ¥(Ro, SNas =+,
0
where u = ¢(R, S), v = ¥(R, S), and this proves (f).

Since W) is increasing and concave, we see that (6) holds if (4) holds. Now, if
(5) holds and (a;), < 0, then W; has no horizontal asymptote; for if v = w;(u; Up)
is asymptotic to v = c, say, then ¢ > w;(u; Uy), so that
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o0 o0
too = S ay(x, e)dx < 5 a(x, wy(x; Up))dx,
uyg ug

and this is a contradiction. This proves (b). Note that (b) is unnecessarily strong.
Given any c, we need only the condition (a;), <0 for each sequence of disjoint in-

tervals {In} tending to 4+« for which 2J 5 aj(x, c)dx =+,
n

In

To see that (c) is sufficient, note that (a1)y < 0, since (a;), +2a;(a;), <0 and
a] > 0. Furthermore, if ¢ is any real number and h(u) = a;(u, ¢), then h > 0 and
h'> 0, so that also (5) holds. (The condition (¢) does not hold for the test system
ut - v = 0, v¢+glu)x =0, where g' <0 and g" > 0; nor does it hold for the sys-
tems u; +f(v), = 0, v¢ + g(u)x = 0 considered in [3].)

Next, using line integrals and Green’s theorem, we see that we can replace the
condition (aj)y < 0 by the double-integral condition in (d). Finally, the sufficiency
of (e) follows from well-known results in ordinary differential equations; see for
example [6, pp. 5-6]. The proof of the theorem is complete.

3. In this section we shall first make some additional remarks on the solution of
Riemann problems in EZ and then sketch some results for some other open sets.

Suppose that we are in the situation of the example of Section 2; that is, suppose
the curves

v=wi(uUy) (uU>uy) and v = wy(u; U.) (u>u,)

do not intersect. We can write these curves in terms of the Riemann invariants R
and S as R=Ry and S=8;. The fact that these curves do not meet implies that
along R =Ry, S has a limiting value S, and along S =S;, R has a limiting value
S = 8,,. This is illustrated in Figure 2. We shall show that Aj(+«, vy + @) and

U, = (u,, vy)

,5=8: (R decreases from R, to R_)

v=v,.-f

V=V£+a

“SR= Ry (S increases from 8, to S.)

Up = (ug, vy)

Figure 2.
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u = oo

v undefined

U, U,
Figure 3.

Aa(+, v, - B) are both finite. First, to show that Aj(+eo, vy + @) is finite, choose
points Pn on R = Ry such that P, — . Then v = wi(u; P,) meets S = S, at points
Qn (Qn_— ). At each Qn, construct the curve v = s3(u; Qp); it meets R = Ry at
points P, (P, — «). Since A, decreases along S =S, (as u increases), we have
the inequalities

A2(Up) > 22(Qn) > 21(Qn) > X (Py).

Since A increases along R = Ry, this shows that A1 is bounded along this curve.
The proof that A, is bounded along S = S,. is somewhat easier. For any point P on
S = Sy, construct the curve v = sz(u; P); it meets the curve R = Ry at the point Q.
Since

A2(P) > 2(Q) > 2 (Q) > 2 (Uy),

we see that A, is bounded from below along S =S,. But A decreases along S =S,.,
as u increases, so that A2 is bounded along this curve.

Now we can “solve” the Riemann problem as follows. We connect Uy to a com-
plete 1-rarefaction wave R =Ry, S varying from Sy to S,,, and we connect U, (on
the left) to a complete 2-rarefaction wave S =S, , R varying from Ry, to Ry.
These two rarefaction waves cannot have any points in common, for otherwise there
would be a point on S= 8, and R = Ry, contrary to our assumption. Thus there is a
“void” region where we make u =+ and leave v undefined. Physically speaking, if
we are dealing with the equations of gas dynamics with one space-variable and with
constant entropy, and if u represents the specific volume (the reciprocal of the den-
sity) and v is the velocity, this region could be regarded as a cavity, that is, as a
region where there is no gas (see [4, p. 364], for example). In the particular case of
a shock tube where both gases are moving in the same direction, say to the left, this
situation is realized if the right boundary of the gas on the left moves at a greater
velocity than the left boundary of the gas on the right. The situation is illustrated in
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Figure 3. It appears plausible that one can change variables so as to avoid the situ-
ation where u =+« and v is undefined.

Next we consider similar questions on the existence of the solutions to the Rie-
mann problem in other open sets. We shall here only sketch the results for the half-
space u > 0. Suppose that all of our hypotheses are satisfied on the half-plane
u > 0, in other words, that

f,g,> 0 and 0;a% F(rj, r;) >0 (1,i=1,2; u>0).

To eliminate possible difficulties in region IV, we must put an additional restriction
on the system. For example, we can require that one of the conditions of Theorem 5
holds.

Figure 4,

Figure 4 illustrates still another difficulty that can arise. Here U, is in region
II, and the 2-shock curves originating on Sy (in u > 0) do not pass through U, if
IU 0" Url is sufficiently large. We can rule this out by requiring that v — -« as
u — 0 along the S)-curves. Since the shock curves satisfy the equation

(- uy)(glu, v) - gluy, vp)) = (v - vp) iy, v) - £{uy, vy)),

it is easy to see that a sufficient condition for this is that lim,_ , gu, v) =+« for
every v.
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