A STABILITY THEOREM FOR FRAMES IN HILBERT SPACE

Lawrence J. Wallen

The point of departure for this note is the well-known theorem [1, p. 4] stating that if $\{x_i\}_1^\infty$ and $\{y_i\}_1^\infty$ are frames (that is, orthonormal sequences) in a Hilbert space H and if $\sum \|x_i - y_i\|^2 < \infty$, then the completeness of $\{x_i\}$ implies that of $\{y_i\}$ (for a generalization, see [2]). We may regard this theorem as a global extension of the trivial local stability theorem in which the symbol ∞ in the inequality is replaced with 1. In this note, we prove that any class of frames, stable under a small perturbation of a certain type, is automatically stable under a more radical perturbation.

1. SOME DEFINITIONS AND THE THEOREM

H will be a complex Hilbert space of arbitrary dimension, and A will be a fixed set such that $card(A) \le dim(H)$. An A-frame is an H-valued function on A whose image is an orthonormal set of H.

Let R^+ be the nonnegative real numbers. Let ϕ be a function defined on $\prod_A R^+$ into $R^+ \cup \{\infty\}$ such that

- (1) if $\xi_a \leq K\eta_a$ for all $a \in A$ and if $\phi\{\eta_a\} < \infty$, then $\phi\{\xi_a\} < \infty$,
- (2) if for each $a \in A$, f_a is a continuous function from a topological space X into R^+ , if $f_a(x) \le \xi_a$ for all $a \in A$ and $x \in X$, and if $\phi\{\xi_a\} < \infty$, then $\phi\{f_a\}$ is continuous.

THEOREM. Let C be a class of A-frames. Suppose there exists a $\delta>0$ such that if $\{x_a\}\in C$ and $\{y_a\}$ is an A-frame with $\phi\{\|x_a-y_a\|\}<\delta$, then $\{y_a\}\in C$. Suppose further that $\{x_a\}\in C$ and that $\{z_a\}$ is an A-frame with $\phi\{\|z_a-x_a\|\}<\infty$. Then $\{z_a\}\in C$.

Assumption (2), which is a generalized M-test, assures us that the perturbations defined by ϕ are small. We can obtain the prototypical theorem mentioned in the introductory paragraph by taking A to be the positive integers, $\phi\{\xi_j\} = \sum \xi_j^2$, $\delta = 1$, and C the class of complete frames. The theorem is an almost immediate consequence of the following lemma.

LEMMA. Let $\{x_a\}$ and $\{y_a\}$ be A-frames. Then for each t with $0 \le t \le 1$, there exists an A-frame $\{x_a(t)\}$ satisfying the conditions

- (i) $x_a(0) = x_a$, $x_a(1) = y_a$,
- (ii) $x_a(t)$ is a strongly continuous function of t,
- (iii) $||x_a(t) x_a|| \le 2||y_a x_a||$ for all $a \in A$.

Received January 19, 1968.

2. PROOFS

First we prove the theorem, assuming the lemma. Since

$$\phi\{\|\mathbf{x}_{a} - \mathbf{z}_{a}\|\} < \infty$$
 and $\|\mathbf{x}_{a}(t) - \mathbf{x}_{a}(u)\| \le 4 \|\mathbf{x}_{a} - \mathbf{z}_{a}\|$,

(1) and (2) imply that $\phi\{\|\mathbf{x}_a(t) - \mathbf{x}_a(u)\|\} = \psi(t, u)$ is continuous on the unit square. Pick n so large that

$$\psi(k/n, k - 1/n) = |\psi(k/n, k - 1/n) - \psi(k/n, k/n)| < \delta,$$

so that $\{x_a(k/n)\}\in C$ if $\{x_a(k-1/n)\}\in C$. Then $\{x_a(1)\}=\{z_a\}\in C$.

We now prove the lemma. Assume first that

$$\dim(H(-) \operatorname{span} \{x_a\}) < \dim(H(-) \operatorname{span} \{y_a\}).$$

Then there is an isometry V on H with $Vx_a = y_a$ for all $a \in A$.

Next note that for any Hilbert-space isometry W and any complex number λ with $\left|\lambda\right|<1,\ W_{\lambda}=(W+\lambda I)\left(I+\bar{\lambda}W\right)^{-1}$ is an isometry because

$$W_{\lambda}^{*} W_{\lambda} = (I + \lambda W^{*})^{-1} (W^{*} + \bar{\lambda}I) (I + \bar{\lambda}W)^{-1} (W + \lambda I)$$

$$= (I + \lambda W^{*})^{-1} W^{*} (I + \bar{\lambda}W) (I + \bar{\lambda}W)^{-1} (I + \lambda W^{*}) W = I.$$

$$S^{t} = \int_{-\pi}^{\pi} e^{i\lambda t} dE(\lambda),$$

 $E(\lambda)$ being the resolution of the identity for S. The family S^t is the usual curve in U(K) (the unitary operators on K) joining the unitary operator S with I. Clearly, $\{x_a(t)\}$ is an A-frame, and $x_a(1) = (R \oplus S)x_a = Vx_a = y_a$. We define $x_a(0)$ to be x_a , and x_a^1 and x_a^2 to be the projections of x_a on $H \ominus K$ and K, respectively.

We have the estimate

$$\begin{split} \big\| \mathbf{x}_{a}(t) - \mathbf{x}_{a} \big\|^{2} &= \big\| (\mathbf{R}_{1-t} - \mathbf{I}) \mathbf{x}_{a}^{1} \big\|^{2} + \big\| (\mathbf{S}^{t} - \mathbf{I}) \mathbf{x}_{a}^{2} \big\|^{2} \\ &= t^{2} \big\| (\mathbf{I} + (\mathbf{1} - t)\mathbf{R})^{-1} (\mathbf{R} - \mathbf{I}) \mathbf{x}_{a}^{1} \big\|^{2} + \big\| (\mathbf{S}^{t} - \mathbf{I}) \mathbf{x}_{a}^{2} \big\|^{2} \\ &\leq t^{2} \big\| (\mathbf{I} + (\mathbf{1} - t)\mathbf{R})^{-1} \big\|^{2} \big\| (\mathbf{R} - \mathbf{I}) \mathbf{x}_{a}^{1} \big\|^{2} + \big\| \mathbf{S} - \mathbf{I}) \mathbf{x}_{a}^{2} \big\|^{2} \\ &\leq \big\| (\mathbf{R} - \mathbf{I}) \mathbf{x}_{a}^{1} \big\|^{2} + \big\| (\mathbf{S} - \mathbf{I}) \mathbf{x}_{a}^{2} \big\|^{2} = \big\| \mathbf{y}_{a} - \mathbf{x}_{a} \big\|^{2} \,. \end{split}$$

Since R_{1-t} is norm-continuous for $0 < t \le 1$, we have only to show that $R_u x \to x$ as $u \to 1$. If $x = V^n y$, where $y \in J$, and if $\|y\| = 1$, then

$$R_{u}x - x = (1 - u) \left\{ \left(\sum_{i=1}^{\infty} (-1)^{j-1} (u^{j-1} + u^{j}) V^{j+n} y \right) - V^{n} y \right\},$$

and therefore

$$\|R_u x - x\|^2 = (1 - u)^2 \left\{ 1 + \sum (1 + u)^2 u^{2(j-1)} \right\} = o(1).$$

Hence R_u tends strongly to I on linear combinations of the $V^n x$, and hence on all elements of H(-)K.

Finally, if dim(H \ominus span $\{x_a\}$) > dim(H \ominus span $\{y_a\}$), we form the $\{y_a(t)\}$ guaranteed by the above argument. Then $x_a(t) = y_a(1 - t)$ has properties (i) and (ii), and

$$||x_a(t) - x_a|| \le ||y_a(1 - t) - y_a|| + ||y_a - x_a|| \le 2||y_a - x_a||.$$

This completes the proof.

3. SOME REMARKS

1. If A consists of the positive integers and $\phi\{\xi_j\} = \left(\sum \lambda_j \xi_j^2\right)^{1/2}$, where $\lambda_i > 0$, then the A-frames may be metrized by

$$d(\{x_i\}, \{y_i\}) = \phi\{\|x_i - y_i\|\}/[1 + \phi\{\|x_i - y_i\|\}],$$

with the usual convention that $\infty/(1+\infty)=1$. Then the lemma implies that the components are the balls of radius less than unity.

2. If in the proof of the lemma we define $x_a(t)$ as $(V + (1 - t)I)(I + (1 - t)V)^{-1}x_a$, then $\lim x_a(t)$ is not necessarily x_a , but $(I - 2P)x_a$, where P is the projection on the eigenspace of V corresponding to the eigenvalue -1.

REFERENCES

- 1. P. R. Halmos, A Hilbert space problem book. Van Nostrand, Princeton, N. J., 1967.
- 2. Y. Sibuya, On biorthogonal systems. Michigan Math. J. 13 (1966), 165-168.

University of Hawaii Honolulu, Hawaii 96822