WEAKLY FLAT SPHERES
Paul F. Duvall, Jr.

1. INTRODUCTION

In [7], D. R. McMillan used the cellularity criterion to give a sufficient condition
for the complementary domains of a topologically embedded (n - 1)-sphere in the
n-sphere ST to be open n-cells. In general, if zK C 87 is a topologically embedded
k-sphere, one may ask for conditions that guarantee that the complement S* - Zk is
homeomorphic to the complement of the standard k-sphere in S™. In other words,
when is S® - Tk homeomorphic to S®-k-1 x Rkt1 9 When this homeomorphism oc-
curs, we follow Rosen [9] and say that =X is weakly flat.

For k > 0, let DX be the standard k-cell in Euclidean space RX. If X isa
space, a loop in X is a continuous function from 9D? into X. The loop f: dD2 — X
is null homotopic if f has a continuous extension F: D2 — X. In this paper, we
study weak flatness via the following generalization of the cellularity criterion.

Definition. Let X be a closed set in the interior of a manifold M. We say that
M-X ¢s 1- £c at X if each open neighborhood U of X in M contains an open
neighborhood V of X such that each loop in V - X is null homotopic in U - X.

In Section 2, we give an argument similar to that of L. C. Siebenmann in [10] to
show that, for n>5 and 2 <k <n - 3, =K C 8" is weakly flat if and only if S» - Zk
is 1 - Lc at Tk, Section 3 is devoted to a proof that under certain conditions, if X
is a compact ANR in S™, if S? - X is 1 - ¢c at X, and if Y is obtained from X by
the deletion of open cones, thén St - Y is 1 - ¢c at Y. In Section 4 we apply the re-
sults in Sections 2 and 3 to questions about weak flatness and cellularity. For exam-
ple, we show that with dimensional restrictions the boundary of a cellular k-cell in
St is a weakly flat sphere and that weak flatness is in a certain sense transitive
(Theorem 4.1). Finally, in Section 5 we give an example to show that a weakly flat
sphere need not be locally flat at any point.

Often we shall indicate the dimension of a space by a superscript the first time
it appears in the discussion, and omit the superscript thereafter. We abbreviate
piecewise linear to PL, throughout. “X =~ Y” is to be read as “X is homeomorphic
to Y” if X and Y are spaces, and as “X s isomorphic to Y” if X and Y are
groups. “X =~p71, Y” means “X is PL homeomorphic to Y.” If X is a subset of a
manifold, N¢(X) denotes the open €-neighborhood of X.

2. A CRITERION FOR WEAK FLATNESS

THEOREM 2.1. Suppose X C 8" is a topologically embedded k- sphere (n > 5,
2 <k<n-3). Then ZK is weakly flat if and only if S® - =X is 1 - gc at ZK.
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In the proof of Theorem 2.1, we shall use the following special case of L. C.
Siebenmann’s open-collar theorem [10].

Suppose W™ (n>5) is a connected PL manifold such that 9W C W is a
homotopy equivalence, W is 1-connected at infinity, and m,(0W) = 0. Then
W ~py, aW X [0, 1).

Proof of Theorem 2.1. The nece551ty follows from the easily verified fact that
with our dimensional restrictions, S™~ k-1 Rk*l j5 1-connected at infinity. To
prove the converse, suppose S™ - Ek is 1-fc at T, 2<k<n- 3, and n> 5.

1) There is a family .# of n-dimensional PL submanifolds of S® such that each
member of .# contains TK in its interior, each member of .# has 1-connected
boundary, and if U is an open set containing =X, then there exists an M € .« such
that M C U.

To prove 1), let U be any neighborhood of =¥, and let V C U be a neighborhood
of K such that each loop in V - =¥ is null homotoplc in U - =k, Using the regular-
neighborhood theorem, one can find a PL submanifold Mn such that

¥ cintM; c M; C V.

Since ZX does not separate any open set, we may assume that oM; is connected.
(This is a standard hole-boring argument ) Now aMl may not be simply connected,
but each loop in dM; is null homotopic in U - =k ; therefore we can do surgery on
9M; to get a manifold M™ with 1-connected boundary such that ZF¥cint M c M c U.
(For details of such an argument, see [2].) M is the member of .« corresponding
to U.

Now choose any M € .. By the theorem of Van Kampen, M is 1-connected.
Because M - =K is 1 - gc at =k , we can choose a connected open neighborhood A
of X in int M such that the mclusmn A-2 ) cM-2 ) induces the trivial maxl)(
on fundamental groups. Since M= (M- ZK) U A andthe set (M- ZK)n A=A
is connected, the Van Kampen theorem implies that there is a commutative diagram

m1(A - ZK)
/ \
71(A) — 0 ~— 7,(M - =K
0\ |/ identity
7, (M - =5).

It follows that 2) 7,(M - Zk) = 0 for each M € ..
Using 2) and the Van Kampen theorem, we get 3) 7,(S™ - zF =0

Now we proceed as in [10]. Alexander Duality implies that S™ - =K has the
homology groups of St-k-1 and by the Hurewicz theorem together with 3),

- k) 0 (<n-k-1),
Ter -27) =
Z h(j=n—k—1).

By Irwin’s theorem [13 Theorem 23, Chapter 8] there ex1sts a PL sphere
zn-k-1 - gn_ sk ihat represents a generator of 7, 3_1(8" -2 ) and by a theorem
of Whitehead [12], the inclusion Zn-k-1 c gn - zk isa homotopy equivalence. Let
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N be a regular neighborhood of zo-k-1 iy g0 - 5K Since n-k- 1 <n - 3, it fol-
lows from [13] that (S®, =n-k-1) xpq, (S?, s2-k-1), Thus =?-K-! hasa PL product
neighborhood and N ~pjy, S2-k-1 x Dkt1  py the uniqueness of regular neighborhoods.

Let W = (S - =K) - int N. Then W is a connected PL n-manifold, 8W =8N is
1-connected, and by excision and the Whitehead Theorem, W C W is a homotopy
equivalence. 2) implies that W is 1-connected at infinity; therefore
W =~py, 0N X [0, 1), by the open-collar theorem. Thus
-k-1 % Rk~l—1 .

b

St - =K xp; int N ~pg, S®

consequently, ok is weakly flat, and the proof is complete.

Remark. As the referee has pointed out, our argument actually proves the iol-
lowing stronger theorem.

If X C 8™ is a compact ANR that is a homology k-spheve (n>5, 2 <k <n - 3),
then S® - X =~ S*~K-1 x RKFL jrand only if S* - X is 1 - fc at X.

Beginning with S0 = {-1, +1} c R!, we may think of S c R™] 3as the join
sn-1x {(0, 0, ->-, 0, -1), (0, 0, ***, 0, 1)}. Given a sphere-pair (S*-1, =k-1) define
the suspension Susp(St-!, =k-1) to be the pair

(sm, =k-1x {(0, 0, ---, 0, -1), (0, 0, ---, 0, 1) }).

Let us say that (S?, zK) isa suspension pair if there exists a sphere-pair
(sn-1 zk-1) gych that (S®, ZK) =~ Susp(s”-1, zk-1),

THEOREM 2.2. Let (S®, =K) be a suspension pair (n > 5, 1<k <n-3). Then
=k is weakly flat if and only if S™ - =k is simply connected,

Proof. The necessity is obvious. For the sufficiency, let S - Zk be simply
connected, and let (S*-!, 2k-1) pe a pair such that (S®, ZK) = Susp(sn-1, =k-1),
Clearly, S0 - =k =~ (sn-1 - $k-1) x R! and Sn-l - k-1 is simply connected.

If k=1, then S8-! - 20 » §2-2 x Rl therefore (S*-! - =0) xRl ~ s"-2 x R?
and ! is weakly flat.

If k> 1, then S-! - =k-1 has one end, and by a theorem of J. Stallings [11,
Proposition 2.2], (S2-! - ©k-1) x R! is 1-connected at infinity. This implies that
Sn - 2k is 1 - fc at ZK, so that X is weakly flat, by Theorem 2.1.

3. A REDUCTION THEOREM

McMillan [8] has shown that if X is a polyhedral AR (absolute retract) and
h: X — M" is an embedding of X in a PL manifold such that M™ - h(X) is 1 - ¢c at
h(X), then M™ - h(Y) is 1 - ¢c at h(Y), for each subpolyhedron Y C X such that X
collapses to Y. Since we are interested in embeddings of closed manifolds, we need
a different reduction.

If A is a space, we define the cone CA to be the quotient space
A x[0, 1]/(A % {0}), and we denote by p: A X [0, 1] — CA the quotient map. For
0<s<r<1, define
CAr =p(Ax[0,r]), Ar=pAx{r}), [As,A:]=pAx]s,r]).

We make the natural identification A} = A.
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THEOREM 3.1. Let XX be a 1-connected ANR, and suppose that xk=vu Z,
wherve Y and the set A=Y N 2Z ave compact, 1- connected ANR’s and
(Z, A) ~ (CA, A). Suppose h: X — S is an embedding n> 5, k < n - 2) and
S - h(X) is 1 - Lc at h(X). Then S™ - h(Y) is 1 - ¢c at h(Y).

Proof. We shall identify (Z, A) with (CA, A), so that we can use the above nota-
tion. Let U be any neighborhood of h(Y). Choose an r (0 <r < 1) such that

(h(X) - h(CA,)) U h(A,) C U.

Choose 71 (0 <7 <r) so that h([A; -1 Ar+??]) C U - h(Y). By a standard argument,
the fact that h([A;_p, Ar+y]) is a 1-connected ANR implies the existence of an
open set Q C U - h(Y) such that h([A, -7 Ar+n]) C Q and each loop in Q is null
homotopic in U - h(Y). Let M™ be a PL submanifold of S* such that

h([A, p, App]) € int M™ € M™ C Q.

e
Let € > 0 be so small that
1) Neu(Y U [Ayyy, A]) € U,

2) Ng(h([A, 5, Ariy])) € int M™, and

3) Ng(h(Y U [A_ 4y, AD) N Ng(r(CA, ) = 8.

Notice that by 1), 2), and 3), every connected subset of Ng(h(X)) that intersects
Ng(h(Y U [Arm, A})) and misses int M™ is contained in U.

Since S - h(X) is 1 - gc at h(X), there existsa 6 >0 (0 < 6 < ¢) such that
each loop in Ng(h(X)) - h(X) is null homotopic in Ng(h(X)) - h(X). Let V be the
component of Ng(h(Y U [Ar+,7, Al])) - M containing h(Y). Then V C U, and we claim
that each loop in V - h(Y) is null homotopic in U - h(Y).

To see this, let f: 9D% — V - h(Y) be any map. Since h(X) has codimension at
least two, we may assume that £f(D2) N h(X) = . By simplicial approximation and
general position, we may assume that f is a PL embedding. Since f is a loop in
N5(h(X)) - h(X), f extends to a map F: D% — Ng(h(X)) - h(X). By general position,
we may assume that F is a PL embedding and that F(D2) N 9M is either empty or
consists of a finite number of disjoint simple closed curves. (This is a standard
general-position argument; see for example Edwards [5, Lemma 2].) If
F(D2) N 9M = @, our remarks above imply that F(D2) C U, so that f is null
homotopic in U - h(Y). Otherwise, let Cy, ---, Cq be the components of F-1(aM)
that are not in the interior of any other component of F-1(3M). Then, as above,

q
F(pz- U intCi) C U - h(Y),
i=1

q
and by our choice of W, we can redefine F on Ui:l int C; to get a map
G: D2 = U - h(Y) that extends f. Therefore f is null homotopic in U - h(Y), and
the proof is complete.

Suppose X is an ANR that can be written as a union Y U Bk, where B isa
k-cell and Y N Bk = 9BX. Then we say that Y can be obtained from X by a perfor-
ation of order k.
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COROLLARY 3.2. Suppose XK is a 1-connected ANR, and Y can be obtained
Sfrom X by a finite sequence of perfovations of ovder at least 3. If h: Xk - gn
(n>5, k< n - 2) is an embedding such that S™ - h(X) is 1 - Lc at h(X), then
S™- h(Y) is 1 - Lc at h(Y).

4. APPLICATIONS

THEOREM 4.1. If =k c S bounds a cellular (k + 1)-cell in S™ (n> 5,
2 <k<n- 3), then =X is weakly flat.

Proof. Suppose ZK bounds the cellular (k + 1)-cell BX*! in S™. Then
st - BEtl js 1 - gc at BX, by [7]. Applying Theorem 3.1 with X = DK*1 and
Y = A = Sk, we find that S? - Zk is 1 - fc at =K, so that =k is weakly flat, by
Theorem 2.1.

In the proof of Theorem 4.3, we shall need the following lemma, which is an im-
mediate consequence of Brown’s monotone-union theorem [3].

oo

LEMMA 4.2. If X C S™ is an intevsection nizl X;, wheve each Xi is cellular
and X;.1 is properly contained in X; for each i, then X is cellular.

THEOREM 4.3. If Bkc 82 is a k- cell and B¥ is cellulayr in S™ (n> 5,
1 < k< n - 2), then every set that is cellular in int BX is cellulay in S™.

Proof. Let h: DX — BK be a homeomorphism onto. Let X C int DK be a cellu-
lar subset. We want to show that h(X) is cellular. Since X is cellular,

. o0
DK - X ~ 8Kl x [0, 1). Therefore we can write X as an intersection ﬂ i=1 Di,
where for each i,

D; isa k-cell, Dit] C intDj, DX-intD; ~ aD;x [0, 1].

For a fixed i, let C; and C, be (k - 1)-cells such that aD; =C; U C2 and
Cl N CZ = 8C1 =8C2. Then

Df ~ D; U (C1x [0, 1]) U (C2x[0, 1),
where we identify C; with C;x {0} (j = 1, 2), and where
(C1x[0, 1]) n(C2x [0, 1]) = aC2x [0, 1].

Since C, x [0, 1] and D; U (C; x [0, 1]) intersect in the common (k - 1)-cell

C, U (@C2 %[0, 1]), Theorem 3.1 shows that S™ - h(D; U (C; x [0, 1])) is 1 - fc at

h(D; U (C1 x [0, 1])). A second application of Theorem 3.1 shows that S™ - h(D;) is

1 - ¢c at h(D;); therefore, by the cellularity criterion [7], h(D;) is cellular in S.
o0

Since h(X) = ﬂizl h(D;), Lemma 4.2 implies that h(X) is cellular in S™.

Remark. If k # 4, then each cellular subset of DX is cellular with respect to PL
cells [7], [11]; therefore Theorem 4.3 also follows from McMillan’s collapsing theo-
rem [8] and the PL-annulus theorem.

THEOREM 4.4. If K c S® is weakly flat (3 <k < n - 3), then each set that is
cellulay in =K is cellulay in S™.

Proof. Since ZK is weakly flat, S® - =K is 1 - gc at Z¥. Let X < Zk pe cellu-
lar. Then there exists a flat (relative to ZK) k-cell BX ¢ TK such that X C int BK
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and X is cellular in int BX. Because BX is cellular in S®, by Corollary 3.2 and
McMillan’s cellularity criterion [7], it follows from Theorem 4.3 that X is cellular
in S™

In the light of Theorem 4.3, one might ask about the transitivity of weak flatness.
That is, if 2k c Zm c §n, with TX Weakly flat in Z™ and Z™ weakly flat in S,
under What additional condltlons is =K weakly flat in S®? We shall need the follow—
ing lemma.

LEMMA 4.5. Suppose that 2 <k < m and T is homeomorphic to
sm-k-1y pktl = Then 3T can be obtained Jrom T by a finite sequence of perfor-
ations of ovder at least three.

Proof. Let q = m - k. The proof is by induction on q. If q =1, then
T ~ A] U Az where Aj and A are disjoint (k + 1)-cells. Since k + 1> 3, the
lemma holds in this case.

Suppose then that q > 1 and that the lemma holds for each positive integer less
than q. Write S2-! as B; U By, where each Bj is a (q - 1)-cell and
B; N Bz=90B; =dB2. Then

T ~ (B; xDN) U (B, x D¥'1) = A, U A,,

where A; = B; x DKtl, Let T* = A] N Az. Clearly, T ~ S22 x D**!, Also,
T* N3T =3T* and T - (int A; U int A2) =3T U T*. Since we can obtain

- (int A} U int Ay) from T by two perforations of order at least three, the lemma
follows by induction.

Notice that if T C S® is homeomorphic to S™-K-1x pk+l gnd wW=8™_ int T
(with m and k as above), then W can be obtained from S™ by a finite sequence of
perforations of order at least three, by Lemma 4.5.

THEOREM 4.6. Suppose that X c 2™ c s (2 <k <m <n - 3), that =¥ is
weakly flat in Z™, and that Z™ is weakly flat in S™. Then Tk is weakly flat in S™

Proof. Since =k is weakly flat in =™ , we can represent ZIk as an intersection
o0

i=z1 W;, where each Wj is the closure of the complement of a locally flat copy of
sm-k-1y pktl jn 5™ and where =¥ C int W, | C int W; for each i. By the remark
after Theorem 4.2 and by Corollary 3.2, S - W; is 1 - £c at W; for each i. Let U
be any open neighborhood of Tk in S, For a sufficiently large i, W; is contained
in U. Let V C U be a neighborhood of W; such that each loop in V - W; is null
homotopic in U - W;. Then each loopin V - Tk ig homotopic in V - Tk toa loop in
V - Wl, because Wi has codimension at least three in S™. Therefore each loop in
V - 2K'is null homotopic in U - =X, Thus 8™ - =¥ is 1 - ¢c at =¥, ana =¥
weakly flat in S™.

5. AN EXAMPLE

In this section, we give an example to show that a sphere can be embedded very
badly and still be weakly flat. Given X c S™ and x € =k , we say that sk is locally
flat at x if x has a neighborhood U in S™ such that (U, U N zk) =~ (Rn, RY). We
say that >k js locally nice at x if for each neighborhood U of x in S" there exists
a smaliler neighborhood V of x such that each loop in V - ¥ is null homotopic in
Uu-2
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THEOREM 5.1. For n > 6, there exists a weakly flat (n - 3)-spheve in S” that
is not locally flat at any point and is locally nice at exactly one point.

Proof. Let A be a Fox-Artin arc in R3 that is not cellular but whose comple-
ment in R3 is simply connected (see Example 1.3 of [6]). By a theorem of Andrews
and Curtis [1], R3/A x R®-3 =~ R0, Identify S with the one-point compactification

(R3/A xRn-3) U {q}, and set =2-3 = ({a} X R*-3) U {q}, where a € R3/A is the
image of A under the quotient map.

Since S? - zn-3 &~ (R3 - A X R"-3), and since the right-hand member is 1-con-
nected at infinity (see Stallings [11]), Theorem 2.1 implies that zn-3 is weakly flat.

Since A is not cellular in R3, the cellularity criterion implies that there exists
a neighborhood U of A such that for every smaller neighborhood V of A thereisa
loop in V - A that is essential in U - A. Using this and the product structure in
R3 /A x Rn-3 | we can easily show that Z"-3 is not locally nice at any point of
{a} X Rn-3, Slnce local flatness in codimension three implies local niceness,
>n-3 js not locally flat at any point of {a} x R"-3. Because the set of points at
which an embedded sphere fails to be locally flat is closed, =n-3 js not locally flat
at any point.

To show that Z"-3 is locally nice at q, it suffices to show that there exist
arb1trar11y large compact sets in R3 /A X R2-3 of the form Y X B such that
- (Y x B)U =2-3) is 1-connected. To construct such a set, let Y be the image
in R3 /A of a large tame 3-ball containing A, and let B be a large tame (n - 3)-ball
about the origin in R1-3, Then R3/A-Y and R”-3 - B are 1-connected and

Do ((YxB)Uz™3) = [R3/A-Y)xR* 3] U[R3/A - {a}) % R®3 - B)].

Therefore the theorem of Van Kampen implies that S - ((Y x B) U =2-3) is 1-con-
nected, and Zn-3 is locally nice at q.

For r > 0, let B, denote the (n - 3)-ball in R™-3 with radius r and center at
the origin. By means of the cellularity criterion it is easy to show that each ball in
Sn of the form {a} X B, is cellular in S®, so that =3 may be written as the union
of {q} and a monotone union of cellular (n - 3)-cells. This illustrates the following
theorem, which is proved in [4].

THEOREM 5.2. Suppose =K C 8™ is g k-sphere (n> 5, 2 <k<n-3) and zk
has the property that for some p € =X, =K is locally nice at p and =k - {p} is the
monotone union of cellular k-cells. Then =X is weakly flat.

If we alter the construction in Theorem 5.1 by choosing A to be an arc in R3
whose complement is not simply connected, we get an (n - 3)-sphere 2‘1"3 in S™

that is not weakly flat, because S™ - En'3 is not simply connected. However, one

can show, as in Theorem 5.1, that Zn - {q} is the monotone union of cellular
(n - 3)- cells
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