ACYCLICITY OF COMPACT MEANS
Kermit Sigmon

The problem of determining the spaces that admit an n-mean was considered
first by G. Aumann [2] and later by B. Eckmann [6], the major tool of the latter being
homotopy and singular homology. In this paper, we use Alexander cohomology to
establish a result analogous to that of Eckmann [6]; it enables us to expand the class
of spaces known not to admit an n-mean. We are also able to extend to Euclidean n-
space some results of P. Bacon [3], [4] concerning means in the plane.

1. PRELIMINARIES
An n-mean (n > 2) on a Hausdorff space X is a continuous function u: X™ — X
satisfying the conditions
(i) p(x, ---, x) = x for each x in X (idempotence);
(ii) p(xy, -+, X,) is symmetric in its argument (symmetry).

A space equipped with a 2-mean is then simply an idempotent, commutative, topolog-

ical groupoid. If, for a permutation ¢ of {1, 2, ***, n}, Ty: X® — X denotes the
map

Tolxy, 5 %) = K1y 5 Xg (n)
and A: X — X™ denotes the diagonal map A(x) = (x, ***, x), then conditions (i) and (ii)

may be expressed as pA =1y and pTy = U, respectively.

We shall use Alexander cohomology, and for simplicity we shall assume that the
coefficients are taken in a fixed principal ideal domain R, unless it is otherwise
stated. An R-module A is wuniquely n-divisible if for each x in A, there exists a
unique X' in A such that nx'= x, in other words, if the function x +— nx is an auto-
morphism of A. A continuum is a compact, connected Hausdorff space.

The proof of the main theorem of the paper is based on the following n-fold ver-
sion of the Kiinneth formula for Alexander cohomology (see [8], especially Theorem
11 on p. 247, Corollary 2 on p. 312, and E2 and E6 on pp. 359, 360).

KUNNETH FORMULA. If X is a compact Hausdorff space, then therve is a short
exact sequence forming the vows of the diagvam

0 — ) Hil(x)®...®Hin(X) l‘; HP(X™) — TP+1 — 0

i+-ee+in=p
| o | =
0— 2 HR -®E™X)AD wPE® - TP 0
igte--+iy=p
and making it analylic; heve o denotes any permutation of {1, 2, +--, n},
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Wo(hil®...®hin) = (_1)il"'in(hio(l)®...@hic(n))’

and TPT! = b H LX) * - * H Y(X).
ipteetip=p+l

The following is an immediate consequence of the identities
na®b) = ma)X®b =a®@mb) and na-+b)= na+nb.

LEMMA. Suppose that A and B are R-modules. If A or B is uniquely n-
divisible, then so is AQX) B, and if both A and B are uniquely n-divisible, then so is

A®B.

2. THE RESULTS

THEOREM. Suppose that X is a continuum such that HP(X) is torsion-free (as
an R-module) for each p > 0. If X admits an n-mean, then HP(X) is uniquely n-
divisible for each p > 1.

Proof. The hypothesis that HP(X) is torsion-free ensures that the A of the
Kiinneth formula is an isomorphism. Since X is connected, HO(X) = R, so that

H1(X)® - ® H™X) ¢ HP(X)

whenever i =0 for all except one index k. Taking note of this, and renaming wg
and M accordingly, we obtain the analytic diagram

HP(X) x -+ x HP(X) x =P & HP(x™)

Wg T’,(;’ ’

HP(X) X -+ x HP(X) x =P & HP(xD)

where
P - hD Hil(X)® ®Hin(X)

ijt---+tip=p
0<ig, iy <p

and wg(hy, ==, hy, b)) = (hg(y), **, hg (), hy) for some h, in =P,

We show first that if ZP is uniquely n-divisible, then so is HP(X). Let h be an
element of HP(X), and let p*(h) = a(h;, **-, h,, h,), where g is an n-mean on X.
Since p* = T’(‘} p* for each permutation o, we obtain the equation

A(hl: S, hn? h*) = A(hc(l)) o, ho-(n), h:k)

for each permutation o, so that h; =hy, =+ =h,.

The idempotency of the mean implies that A* u* is the identity on HP(X), and
therefore
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h = A* “*(h) A*}‘(hly "ty hl) h*)

na*ath,, 0, -+, 0) +nAa*A(0, -+, 0, (1/n)h,)

nA*A(hy, 0, -+, 0, (1/n)h,).

It follows that if we define p HP(X) — HP(X) by p = A* Asx 1 pu* where
s(hy, ---, hy, h,)=(hy, 0, -+, 0, (1/n)h, ), then h =np(h) = (nh) Hence HP(X) is
uniquely n-divisible.

By observing that Z! is trivial and appealing to the lemma, one easily deduces
the theorem by an inductive argument.

By taking integral coefficients, one sees that no cohomological p-sphere (p > 1)
can admit an n-mean, since HP(SP) = Z is not n-divisible (see Section 3).

The theorem enables us to extend the results of Bacon [3] on n-means in the
plane to RP (Corollaries 1 and 2) and to obtain his unicoherence result in [4] for n-
means (Corollary 3). We note, however, that in some of Bacon’s results a weaker
form of symmetry than ours is assumed.

COROLLARY 1. If X is a compact space admitting an n-mean, then
HP(X; Z,) =0 forall p> 1.

Proof. Suppose first that X is connected and that q is a prime dividing n. Then
Zq 1is a field such that HP(X; Zq) is a vector space and hence is torsion-free for all
p > 0. It follows from the theorem that HP(X; Zy) is n-divisible. But each element
of HP(X; Z q) is of additive order q; therefore HP(X Zq) = 0. Now let
n=q;qp *-* i, where the q; are primes. According to a result of Gordon [7], the
short exact sequence
— 0

0 -2 - Z

91 9 a1 Arp1  Zapyg

induces an exact sequence

HY(X; Zq, .coqp) = H(X; Zq, .ooqppq) = B (X5 Zqpy)-

A simple inductive argument then gives the equation HP(X; Z,) = 0. (Indeed,
HP(X; Z,,) = 0, provided each prime divisor of m is a prime divisor of n.)

If X is not connected, then each component C of X admits an n-mean [2, Satz
4], so that HP(C; Z,) = 0 (by the first part of the proof). But if HP(C; Zy,) = 0 for
each component C of X, then HP(X; Z,)) = 0 [9, p. 44].

COROLLARY 2. If a compact subset of RP (p > 2) admits an n-wmean, then it
does not cut RP.

Proof. If X is such a subset, then HP~}(X; Z,) = 0, by Corollary 1. The co-
homological version of Bacon’s proof of (2.3) in [3] now implies that X does not
cut RP,

COROLLARY 3. A continuum that admits an n-mean is unicohevent.

Proof. For such a space X, we know from Corollary 1 that H!(X; Z_) = 0. Sup-
pose that A and B are subcontinua of X such that X = A U B, and consider the ab-
solute Mayer-Vietoris sequence, reduced in dimension zero:



114 KERMIT SIGMON
>0/4A. 20/n. =0 . 1<
- #%4; z,) x#9%B; 2,) » B AN B; Z,) — H'(X; Z,) — .

Since connectivity of a space is equivalent to the Vanlshmg of its reduced zero-
d1mensmna1 cohomology group, we see that HO(A Z,) = HO(B Z,) and hence that
H (A N B; Z,)=0. Thus A N B is connected and X is un1coherent

The next corollary shows that, up to the unsolved problem whether codimension
depends on the coefficients, the assumption of associativity in the paper of L. W.
Anderson and L. E. Ward [1] is unnecessary.

COROLLARY 4. If X is a locally connected continuum admitting an n-mean and
having codimension (X; Z,) = 1, then X is a tree.

Proof. Suppose A 1s a subcontinuum of X. The assumption that codimension
(X; Z,) =1 implies H 2(X, A; Z,)=0 [5, Theorem 3.3], and Corollary 1 implies that
HI(X Z,) = 0. Appealing to the exact sequence

- HY(X; Z,) - HY(A; Z,) - HA(X, A; Z,) —
we conclude that H l(A; Z,) = 0. As in the proof of Corollary 3, we can show that A
is unicoherent. But Ward [10, Theorem 9] has shown that a locally connected con-
tinuum all of whose subcontinua are unicoherent is a tree.

3. EXAMPLES

Set r = 1/, and consider the following subsets of R3:

A= {xy, z)| z =sin(x? +y2)-1/2 0 <x%+y2<r?},
B={(0,0,z) -1<z<1},

C= {7y 2)|x*+y?=r?, 0<z<2},

D= {7 2)| x?+y*<r? z=2}.

The space X=A U B UC U D is a cohomological 2-sphere and hence admits no n-
mean. However, its positive-dimensional homotopy and singular homology groups
vanish, so that the results of Eckmann [6] do not apply. More generally, for each

p > 1, one can compactify RP by adding a real arc in such a way that the compacti-
fication is a cohomological p-sphere with vanishing positive-dimensional homotopy
and singular homology groups.

The role of the coefficients in the foregoing results is illustrated by the n-adic
solenoids Z, [8, p. 358]. The natural topological group structure on Z, has the
property that s(x) = x® is an automorphism; so that p(x), -, x,) = s~1(x) = xy)
defines an n-mean on Z,. In agreement with Corollary 1 we find that

H1(Z,; Z,) = 0, while HI(ZZ ; Z), being isomorphic to the dyadic rationals, is non-
zero but un1que1y 2-divisible, as assured by the theorem. However, H (2}2 s Z) is
not 3-divisible, and therefore Z2 admits no 3-mean.

We make a final remark regarding when the existence of an n-mean on a space
implies the existence of an m-mean on the space. A moment’s thought shows that a
space admits an mn-mean if and only if it admits both an m-mean and an n-mean.
Letting P(n) denote the set of prime divisors of n, we deduce that if a space admits
an n-mean, then it admits an m-mean whenever P(m) C P(n). The n-adic solenoids
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furnish examples to show that in general this is the most that can be said. For sup-
pose that q is a prime divisor of m but not of n. Then Hl(En; Zq) is isomorphic

to Z

[S2 B~ S U

q, SO that %, admits no m-mean while it does admit an n-mean.
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