A REMARK ON FREE MODULES
K. R. Mount

Suppose A is a commutative ring with identity, and A[x] is a polynomial ring in
one indeterminate with coefficients in A. Suppose F is a free module over A[x]
with a basis eqg, -+, e,. Corresponding to each element P of F, denote by {P}

the submodule of F generated by P. Set P = Z)Pu e, with

R
= 27 plu, v)x¥ (0<u<r),

v=0

P

u

and assume that Q, = Eizo q(u, v)xV are r + 1 polynomials, each of degree d, the
coefficients q(u, v) being independent indeterminates. We shall denote by E(P, n; d)
the matrix of the system of linear equations (in the variables q(u, v)) obtained by
equating to zero the coefficients of the xJ (0 < j < n+d) in the expression

27 (-1)*P,Q,. The matrix E(P, rd; d - 1) is square. In this paper we prove the
following proposition.

THEOREM. If the determinant of E(P, rd; @ - 1) is a unit in A (heve rd de-
notes the maximum of the degrees of the P)) and if the A-module

[Aeg + .-+ + Ae ]/ { 22 plu, rd)e, }

is free, then the module F/ { 27 Qu eu} is free for each 20 Qu ey such that

27 (-1)"Q, P, = 1. Furthermore, if A is an integral domain, then F/ { 27 P,eu } is
free.

We shall suppose throughout this paper that the rings discussed are commutative

and have a unit. ¥ P = 2J P,e, is an element of F, we shall say that P has degree
d if a polynomial of maximal degree occurring among the P, has degree d. We
shall refer to the matrix E(P, n; d) as the d-th eliminate of P, and we shall suppose
that the columns of E(P, n; d) are indexed by the pairs (u, v) of integers with
0<u<r and 0<v<d, while the rows are indexed by j (0 <j<n+d). Incase
P has degree rd, the matrix E(P, rd; d) has (r +1)(d +1) columns and (r +1)d+1
rows; therefore, if A is a field, the dimension of the solution space of the equations

27P,Qy =0 (with deg Qu < d) is at least r.

Until we specify otherwise, we shall suppose that A is a field, and we shall de-
note by K an algebraically closed field of infinite degree of transcendence over A.
We alter notation slightly to denote by F a free K[x]-module with basis ey, ***, e...
Denote by F4 the K-vector subspace of F consisting of elements of degree at most
d. Denote by G(Fd; r) the Grassmann space of r-dimensional subspaces of Fgq. If
V is a vector space, then P(V) will denote the projective space consisting of the
one-dimensional subspaces of V. We shall say that an element of P(F;) has degree
t if a nonzero vector in that element has degree t.
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We introduce Pliiker coordinates in G(F 4; r) in the usual way. Suppose A® yFy
is the r-th homogeneous component of the Grassmann K-algebra of the K-space Fg,
and assume S(r, d) is the lexicographically ordered collection of pairs (u, v) of in-
tegers with 0 <u<r, 0<v<d. If o is an increasing function from 0, ---, r - 1
to S(r, d), set a(t) = (u(t), v(t)), and denote by €(a) the element

XV(O)eu(O) VANRTIIVAN xv(r'l)eu(r_l)

of A" xkFq. The space AT xFq has a coordinate system consisting of the linear
functions X(a) dual to the £(a). The coordinates X(@) on AT gF4 induce a projec-
tive coordinate system on P(AT F;), and we shall denote by pX(a) the coordinate
that X(a) determines on P(AT KFd?. It is well known that if L is a point of

G(Fy; r) (that is, if L is a linear space of Fq and if L has a basis BO, ..., Br-1),
then L may be considered as a point in P(AT (F4) with projective coordinates

pX(a) (L) = X(a)[B® A - ABT"1].

The K[x]-module F also has a Grassmann algebra Ag[x F, the r-th homogene-
ous component of which we denote by AT F. The module AT l<l is a free K[x]-module
with a basis consisting of elements of the form €p(0) AN e A eg(r-1) = e(B), where B
is an increasing function from 0, -*-; r - 1 to 0, :»-, r. Denote by B; the increasing
function from 0, *-, r - 1 to 0, :--, r with a range that does not contain j, and de-
note by (AT F)rd the K-space in AT F consisting of the elements of the form

27 P; e(B:), where Pj is an element of K[x] of degree at most rd. A K-basis for

J J J
(AT F),.q consists of the elements x* e(B;). We denote by Y(j, t) the linear function
dual to xt e(BJ-), and by pY(j, t) the associated projective coordinate on P((AT F)_4).

We are now in a position to define a map A from G(Fg; r) to P((AT F).q)-
There exists a K-linear map I from (A¥ gF) to AT F that carries a vector
v=vy A« Avy.in AT gF to I(v) =v; A+ Ay, in AT F, where the hook product in
v is over K and the product in I(v) is over K[x]. The map I carries AT gFq line-
arly into the space (A* F).q, and therefore it determines a linear transformation pI
from P(AT xF4) to P((AT F),.4). The restriction of pI to G(Fg; r) is the map A
that we seek; thus A is a rational map from G(Fg4; r) to some subvariety of
P((AT F), o). ‘

We need two other rather obvious descriptions of A. We first note that we may
describe A by a system of linear equations. Let J(j, s) be the collection of increas-

ing functions from 0, ---, r - 1 to S(r, d) such that a(t) = (u(t), v(t)), 2o ult) = s, and
j is not in the set u(0), ---, u(r - 1). The equations for A are then
(D) pY(j, s)[A(L)] = 27 pX(a)[L],

where @ ranges over J(j, s). Note that if o; is the increasing function from

0, ---, r - 1 to S(r, d) whose range consists of the values

0,d), -, (G-1,4d),G+1,4d), -, (r, d),

then pY(j, rd)[A(L)] = pX(o;)[L].
In order to give the second description, suppose L is a point in G(F4; r) with a

basis 2J Pjje; (0<i<r-1). Let M be the matrix (Pj), so that M is an
r X {(r + 1) matrix of polynomials of degree less than or equal to d. If we denote by
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Aj(M) the determinant of the matrix derived from M by deleting the column indexed
by j, then A(L) is the line determined by the vector 22 A;(M) e(B;).

The second map in which we shall be interested carries P((AT F)_.4) to a sub-
variety of G(Fq; r). Suppose that A is an increasing function from
, (r+1)(d+1) to S(r, d), and suppose L is a point in P((AT F).4) determined

by an element P = 2 P;e; of F. We denote by Z(x)[P] the determinant of the ma-
trix formed of the columns of E(P, rd; d) indexed by the range of A, by c(A) the in-
creasing function from 0, :--, r - 1 to S(r, d) whose range is the complement of the
range of A, and by ¢) =+1 the signature of the permutation

c(2)(0), -, c)(xr - 1), Alx), =+, A(xr +1)(@+1).

We now define a map E by the equations (D*): pX(c(\))[E(L)] = €5 Z(») [P]. This
map is obviously rational, if it is defined; moreover, it is well known [1, p. 294] that
if E is defined then it carries L to the space of solutions of the system of linear
equations whose matrix is the (rd, d)-eliminate. Therefore, E(L) is the K-space

consisting of the solutions of the equation 20 P;Q; = 0 with deg Q, < d.

The criterion we seek will follow from the proof that the rational map A is ac-
tually a birational correspondence between G(Fg; r) and P((A* F).q), and that E is
its inverse.

We shall say that an element P in F is generic of degree d over A if each
polynomial P, (the coefficient of e; in P) has degree d, and if moreover, the co-
efficients of the polynomials P; are algebraically 1ndependent 1ndeterm1nates over
A. An r X (r +1) matrix (PlJ) is generic of degree d over A if the Pjj are all of
degree d and have coefficients that are algebraically independent indeterminates
over A.

Suppose 27 Pje; is an element of F and that the polynomials P; are in A[x],
that they have positive degree, and that they generate the unit ideal. Suppose

EQi e; and EQ{ei are generic of degree d over A, with algebraically independent
indeterminates as coefficients. A simple specialization argument shows that the

polynomials EQ P; and EQ P; are relatively prime. Now suppose that M = (P :)
isan r X (r+1) matr1x that is generlc of degree d over A. We claim that the poly—
nomials Ag(M), ---, A.(M) generate the unit ideal. The proof is by induction. For

r =1, the assertion is clear. If r > 1, assume that N = (Pij) 0<Lilr,

0 <j<r+1) is generic of degree d. The first r columns of the determinant

AL(N) (or Ar4+1(N)) form an (r + 1) X r matrix that is generic of degree d, and thus
its sequence of r X r subdeterminants generates the unit ideal. If we now apply the
previous remark to the expansions of A (N) and A.;;(N) by the last row, the asser-
tion is clear.

LEMMA. Suppose that M = (Pyj) is an r X (r +1) malvix genevic over A of de-
gree d. If N=(Qy;) is an r X (r +1) matyix, and if, moveover X A;(M) = A;(N)
(0 < j <r) for some nonzero \ in K, then the K-linear subspace of Fq spcmned by

the vectors 27 Pjje;j (0<LiLr - 1) is the same as the space spanned by the vectors
EQij €j (0<Li<Lr - 1), Further,if v= EYJ- ej is an element of Fq satisfying the
condition 27 (-1)3 AJ-(M)YJ- = 0, then v lies in the K-space spanned by the 27 Pjje;.



80 K. R. MOUNT

Proof. Tt will suffice to show that if 2J(-1)IQ;A{(M) = 0 with deg (z Qje j) <d,

then 27 QJ- ej isa K-linear combination of the vectors vy = EPujej . Denote by K(x)
the field of fractions of K[x]. The vectors v, :--, v,. are linearly independent over

K(x), and they are solutions of the equation 20 (—l)jAj(M)Yj = 0; therefore
EQjej = ER’J“vj for some R’.']-‘ in K(x). We can choose S and R; (0<j<r) in
K|[x] that are relatively prime, such that S (EQjej) =2 R;vj, in other words,

such that SQJ- =2 R¢ Py (0 <j <r). We now apply Cramer’s rule to all but the j-th
equation of this system and derive the relation

(*) AJ(M) Ry = Sdet (Bjk),

where Bjx is an r X r matrix each element of which is either a Pyy or a Q¢. Since
M is generic, there are polynomials C; in K[x] satisfying the equation

ECJ- AJ-(M) = 1. If we multiply (*) by C; and sum on j, we find that

Ry = S (E C;det (Bjk));

therefore S divides Ry . Since the R and S are relatively prime, S is an element
of K. Because the matrix M is generic over A, the polynomial Ay(M) has degree
rd and the polynomial det (Bgy) has degree at most rd; thus the relation (*) implies
that if Ry # 0, then Ry has degree zero; therefore each Rx is an element of K.

We shall now state and prove the main result.

THEOREM. The correspondence A is a bivational covrespondence from
G(Fg; r) to P((AY F)pq). The vational map E is the inverse of A. If L is an ele-
ment of P((AT F)_4), and if, moreover, P is an element of F of degree rd, then E
is vegular at L and A is vegular at E(L) if and only if det (E(P, rd; d - 1)) #0.

Proof. We shall first show that A is a left inverse of E at L in P((ATF),y), if
L has degree rd and det [I(P, rd; d - 1)] # 0 for some P in L. We can derive the
matrix E(P, rd; d - 1) from E(P, rd; d) by deleting the r + 1 columns indexed by
(j, d) and the row indexed by (r + 1)d. The row in E(P, rd; d) indexed by (r + 1)d
has nonzero entries only in the columns indexed by the (j, d). Suppose

P= 20 Pje(Bj) has degree rd, and that L is the point determined by P in
P((A* F),q). Since P has degree rd, P; has degree rd for some t, and therefore

rank E(P, rd; d) = rank E(P, rd; d - 1)+ 1.

Since we have assumed det [E(P, rd; d - 1)] # 0, there are polynomials Qg , ‘-, Q,

of degree at most d - 1 such that 2 P;jQj = 1; further, the map E is defined and
regular at L. The map A is defined at E(L). To see this, suppose that P; has
degree rd, and denote by 6(j) the increasing function from (r + 1), -=-, (r +1)(d + 1)
to S(r, d) whose range does not contain (0, d), -, (j - 1, d), (j+1, d), -+, (r, d).
Then Z(6(j)) # 0, and from the equations (D) defining A and the equations (D*) we
see that pY(j, rd) [E(L)] = & ¢(;)p 2(6 () [L].

In particular, note that if M(L) = (Qij) is an r X (r + 1) matrix of polynomials,
and if its row vectors form a basis for E(L), then the polynomial A;(M) is nonzero
and has degree rd. As we remarked before, E(L) is the space of solutions of the
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system of equations with matrix E(P, rd; d); therefore 20 (—l)jQij P;=0. If we now
apply Cramer’s rule to the system of linear equations

27 QitPy = - QiuPu,
t#u

we obtain the equality A4 (M)P, = A,(M)P,. The P, are relatively prime. Since
Aj(M) # 0, we see that Aj(M) = @P;j, and therefore OP, = A (M) for each v. The
polynomials AJ-(M) and P; have the same degree; thus ® is an element of K and
AE(L) = L.

To show that if AE(L) = L, then det [E(P, rd; d - 1)] # 0 for P in L, we note
first that since E(P) is defined, rank E(P, rd; d) = (r +1)d + 1, because
rank E(P, rd; d) = rank E(P, rd; d - 1) + 1. It follows immediately that
det [E(P, rd; d - 1)] #0.

To complete the proof, we need only show that det [E(P, rd; d - 1)] # 0 for some
P that determines a point L in P((A* F).q). Suppose h = (Hij) isanrx (r+1)
matrix that is generic of degree d over A. Our lemma shows that the equation

20 (—1)j Aj(h)Y; =0 has precisely r linearly independent solutions over K; there-
fore, if we set H = 27 Aj(h) e(Bj), then

rank E(H, rd; d) = (r +1)d+1,

from which we conclude that det [E(H, rd; d - 1)] # 0. This completes the proof.
Now suppose that A is an arbitrary commutative ring with a unit. If F is a free

A[x]-module with basis eq, -, ey, if v = 20 Pje;j with P; = 2sp(i, j)xJ, and if the
degree of v is d, then we call the A-module Aeg + --- + Aer/{v} the leading coef-
ficient module of v.

COROLLARY. Suppose Al[x] is a polynomial ving in an indeterminate x over A,

and assume 27 Pjej is an element of F of degree rd and that Pg is monic of de-
gree rd. If det [E(P, rd; d - 1)] is a unit in A, then there exists an r X (r +1)
matvix M with entvies in A[x] such that A;(M) = Pj.

Proof. Suppose first that A is a universal domain K. The map E from
P((A* F)rd) to G(F4; r) is regular at L if P, is monic of degree rd and

det [E(P, rd; d - 1)] # 0 with P in L. Denote by 27 the affine open set in
P((A* F),4) consisting of the points L such that Y(0, d)[L] # 0 and Z(6(0)) [L] #0.

The affine ring of 27 is then

K [Y(u, v)/Y(0, d)][det (E(G, rd; d - 1))~1],

d .
where G is the element 2 G;e; with G;= 24¢ [Y(i, j)/Y(0, d)]xi. The image of

27 under E is contained in the affine open set in G(Fg4; r) determined by the in-
equality X(oq) (L) # 0, as one sees easily from the equations (D*). We may index
the projective coordinates of G(Fg; r) by the ranges of one-to-one functions from

0, ---, r - 1 to S(r; d), if we suppose that a function X(a(0), ---, a(r - 1)) is skew-
symmetric in the sequence a(0), ---, a(r - 1). With this convention, we denote by
w(j; u, v) the function with range (1, d), ---, (j - 1, d), (u, v), (j +1, d), ---, (r, d),

and we introduce elements
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Bi(y) = ( I;Z‘;) (XG5 v, v))/ X(0 )] ()% ey .

It is well known [1, p. 313] that the linear space with basis B!(y), -+, B*(y) has

Pliiker coordinates [X(y)/X(oo)](y) for each y. If Bi(y) = Eth e, set
B = [Qij(E(L))]. The equations (D) then show that A;(B) = P;j for each j. We have

shown that the BI = 2J [X(1G; u, v))/X(0g)]x" e, are elements of a free module with
basis eg, ***, e, over the affine ring of the set determined by the inequality

X(o o) # 0, and that the identity A;(B) = Gj holds. The equations (D*) show that we
may write BJ(E(G)) in the form

2 ex (500 [Z0G; u, v))/ 205 1, a)1(G)xY ey,

where A(j; u, v) = c(u(j; u, v)). The equations A;j(B) = G; then give an identity in the
affine ring of 22, Suppose now that A is a commutative ring with unit. If

P=2 P;e; is an element in F satisfying the conditions of the statement of the
corollary, and if we set

BI(P) = 278, (5.4 [Z0; u, V) ZOG; §, a)(P)x"e,,
then since Pg is monic, the Bj(P) are elements of F and the equation Aj(B) = G;j
specializes to A;(B(P)) = Pj.
Suppose now that Pg, ---, P, are elements of A[x] where A is a commutative

ring with unit, and assume that 27 P;Q; =1 for some Q; in A[x]. Denote by ¢ the
homomorphism from F to A[x] defined by ¢(e;) = P;. In [3'(bottom of page 162)] it

is shown that if ker (¢) is free over A[x] with generators 2J Rije; (1 <i<r), then
P;Ao(R) = g5 PoAi(R), where €5 =41 and R = (Rij). Since 27 P;Q; = 1, we deduce

that Ag(R) = EaiQiAi(R) Po ; that is, A;(R) = HP; for some H and all i. Since
the ideal Py, ---, P.. is free, it follows from {2] that if A has connected spectrum,
the A;(R) generate the unit ideal, and hence H is a unit. Therefore, if A has con-
nected spectrum, and if the kernel of ¢ is free, then there exists a matrix R = (Rj;)
such that Aj(R) = Pj .

COROLLARY. If A is a commutative ring with a unit; if 22 P;e;j is an element
of the free module F over A[x] of degree rd such that the leading coefficient mod-

ule of 27 P; e; is free and such that det [E(P, rd; d - 1)] is a unit, then, for each
element Q = Z)Qiei in F salisfying the condition 27 (-l)kQ]-L P; = 1, the module

F/ {Q} is free. If A has connected spectrum, then the module ¥/ \ 2 Piei} is
free.

Proof. If the leading coefficient module of the element P = 22 P;e; is free, then
there exists an (r + 1) X (r + 1) matrix M with entries in A such that det (M) is a

unit in A, and if P; = Ep(u, j)xJ, then
(p(0, rd), ---, p(r, rd))M = (1, O, ---, 0).

The element P'= 2J P}'e; with (Py, -+, Py.)=(Pg, *--, P.)M is then in F, and Py
is monic of degree rd. If m is a maximal ideal of A, denote by pm(Pj) the
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polynomial derived from Pj by reducing the coefficients mod m. Denote by p,,(M)

the matrix derived from M by reducing the entries modulo m, and similarly for

pm E(P, rd; d - 1). The determinant det [E(o, P, rd; d - 1)] is a unit in A/m. The

latter statement is equivalent to the assertion that 0 is the only solution of the equa-

tions 2 (-1) (Pm PJ-)YJ- = 0, if the Y; are polynomials of degree at most d - 1.

Since p,.,(M) is a unit, the equation 27 (-1) (om P;)Y;j = 0 has only the trivial solu-
tion (deg Y; < d - 1), and therefore pp,det [E(P', rd; d - 1)] is nonzero for each
maximal ideal m. We may suppose that Py is monic of degree rd. Now we can ap-
ply the previous corollary to find an r X (r + 1) matrix N with A;(N) = P;. There-
fore there exists an (r +1) X (r + 1) matrix with determinant 1 and with first row
(Qo, -+, Q). This completes the proof of the first part of the corollary. For the
second part, it will suffice to show that if A has connected spectrum, if

27(-1)5P,Q, =1, and if U= F/{Q} is free, then V = F/{P} is free. The sequence
0-4{Q} - F—->U-0

is exact, and U is free. We dualize by applying Hom (-, A[x]), and we derive the

exact sequence 0 — Hom (U, A[x]) — Hom (F, A[x]) —» A[x] — 0. The module

Hom (U, A[x]) is isomorphic to the set of all ERi e¥ (the e¥ denote the basis dual

to the e;) satisfying the equation 20 R;Q; = 0. Therefore the discussion preceding
the statement of the corollary shows that there exists an r X (r + 1) matrix S such
that Aj(S) = Qj. From this we see immediately that V is free.
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