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1. INTRODUCTION

In this note, we discuss the class of functions

(=]

f(z)=z+Ea zD

n
n=2

that are analytic in the unit disc U, satisfy the condition f'(z) # 0 in U, and map U
onto a domain with bounded boundary rotation (for a definition of this concept, see
[3]). In particular, we denote by Vi the family of functions that satisfy the above
conditions and map U onto a domain with boundary rotation at most kn. V. Paatero
[3] showed that f € V. if and only if

z 27 .
(1.1) f(z) = S exp {S log (1 - ze“lt)-ldp.(t)} dz,
0

0

where ((t) is real-valued and of bounded variation on [0, 27] and satisfies the con-
ditions

i) SZﬂdu(’c) =2, i) Szwldu(t)l < k.
0 0

V, is precisely the class of normalized univalent functions that map U onto a convex
domain, and it is known [3] that for 2 < k < 4, Vy consists only of univalent func-
tions.

In spite of considerable effort, the problem of determining

(1.2) A (k) = max |a
fe Vk

nl

remains unsolved, except for k =2 and k = 4.

K. Loewner [2] proved that A(2) =1, and A. Rényi [5] proved that A,(4) =n.
Rényi’s result shows that
(1.3) An) <n (k< 4);

in addition Rényi proved that

(1.4) Ank) < nk-Z,
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which in view of (1.3) is of interest only when k < 3. O. Lehto [1] proved that
Ay(k) =k/2 and Aj3(k) = (k2 + 2)/6 (Lehto states that A,(k) = k/2 had been proved
earlier by G. Pick). Lehto also proved that

kl’l—l
n!

A (k) ~ (k — ).

Finally, necessary conditions on the extremal function for this extremal problem
have recently been obtained in [4] and [6].

The purpose of this note is to prove the estimate

k/2-2
(1.5) A k) < e (2 -1—11) nk/2-1

and to show that the order n*/2-! cannot be improved for any k. We note that for
sufficiently large n, (1.5) is an improvement on (1.3) and (1.4).

2. COEFFICIENT ESTIMATES

Our main result is a consequence of the following theorem, which is of some in-
terest in itself.

THEOREM 1. Let £(z) € V. If A> 1, then

1
SkA-1
27 . A 2
I(r, £') = 5 |£'(ret?)|* a0 <211( 1 ) (“’r) for 0<r<1.
0 - 1 - 1‘2 1-r —
Proof, It follows from (1.1) that
27 1
(2.1) f'(z) = exp {S log (1 - ze )" d,u.(t)} ,
0
where
27 217
(2.2) S dp(t) = 2 and S ldu(t)| < k.
0 0

If y(t) denotes the variation of u(t) over [0, t], then
1 1
) = 5 {r®)+u®} - 3 {rt) - pO} = vt) - o(t)
is a decomposition of u(t) into a difference of increasing functions. Moreover, by

(2.2),

(2.3) 2< ven)-v(0) =a<3k+1l, 0< o@m)-0(0) <gk-1.

It is clear from (2.1) and (2.3) that if z = reif , then
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2 2 .
L(r, ') = S " exp {7\ 50 " 10g]1 - ze'ltl"l d(v (t) - o(t))}de

0

27 27 .
< (1+r)7‘(k/2'1) S exp{A.S logll - ze‘ltl‘1 dv(t)}d().
0 0

Applying Jensen’s inequality in the previous estimate we may write

27 2m
I(r, £) < (1+p)ME/2-1) S exp {ah S log |1 - ze~it|-1 d(%) }d@
0 0

(2.4) < +I')Mk/2_l)52ﬂ SZﬂ |1 - ze'it]'ahd(y—g—)) daé
0 0

2T 2T ]
= (1 +r)h(k/2'l) S S [1 - ze-ltl'a)\dﬂd(v—f—)) .
0 0

Since 2 < ax < A(k/2 +1),

2 ) 27 ,
(et a0 < — L [ |1 - 2ot a0
0 B

27 < 27
(1 - I'Z) (1 - r)a?\—z —_— (1 +r) (1 _ r)}\.(k/Z‘l‘].)-l °

Using this inequality in (2.4), we obtain the estimate

1
5kA-1
A 2
, 1 1+r
I;\(r,f)SZW(l rz) () ,

1-r

and the proof of Theorem 1 is complete.
THEOREM 2. Let A,(k) be defined by (1.2); then

k/2-2
(2.5) Ak) < e (2 -1-11) nk/2-1

[> o]
Proof, If i(z) € Vi and 1(z) =z + 27 anz”, then (with the notation z = reie)

n=2

1
2rr?

27 -ind i 217 i
nla,| = 5 zf'(z) e dGI <———an0 [£'(re’”)| do .

0 - 2nr

Using the estimate of Theorem 1 and taking r = n

, we get the inequality
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1 n—l( 1 )k/Z—Z x/2
(2.6) n|a,| < ( n-l) 2 -2 n’°,
which implies that
1 k/2-2
lan] <6(2-E) nk/Z-l.

The theorem follows from this inequality.

Since we are only interested in estimating An(k) for n > 4, we can simplify the
estimate in Theorem 2 as follows.

COROLLARY. For n> 4,

.. (%).2-k/znk/2_1 <),

Ank) <

o.gk/2-2 k/2-1

Proof, For n > 4,

(5)7 wso,

gk/2-2 k > 4),

and the result follows from (2.5).

It is interesting to compare (2.5) with the actual value for A (k) in the two cases
where the value is known. For k =2, (2.5) yields

n

1 =A,02) < e’

and for k =4,
n=A4) <e-n.

Four is the smallest value of n for which A (k) is not known. We use (2.6) to
give the following estimate.

4
COROLLARY. Ayk) < < S T22,

It remains to show that the order nk/2-1 in (2.5) cannot be improved. Let plt)
be a step function on [0 27], with two discontinuities. One discontinuity occurs at
t = 0, with positive jump 1 +k/ 2, and the other at t = 7, with negative jump 1 - k/2.
The function f(z) defined by (1.1) belongs to Vi, and it is given by

f(z)=%[(1+z)k/2-1]=z+ ;}/ A z™,

1-=z =2

Since
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0 %k(-l-k—l—l) (3k+n- 1)

(l-z)'k/2=1+2 2 ' 2 zn
n=1 n!

and

o0

(1+Z)k/2 = Z) (k/2)zn’

n=0 n

it follows that
n-1 1 (1 )(_1_ )

o A =l > (k/2)2k 2k+1 zk+n j-1 +_1_(k/2)
- n k| o\ i - )1 X\ n /-

Now (kJ/ 2 ) is nonnegative if j < [k/2] + 1 (greatest-integer notation). If

ji> [k/2]+ 1, then ( k]_/ 2 ) is nonnegative or nonpositive according as j - [k/2] - 1
is an even or an odd integer. Thus, if [k/2] is not an integer, the sign of (k]/ 2 ) is

alternating for j > [k/2]+1. For j <n,

_1_(1 )(l _-_) l(l )(l _-_)
2k 2k-l—l 2k+n j-1 >2k 2k+1 2k+n j-2 ’

(n - j)! = (n-j-1!

and for j > [k/2] + 1,

SRIRIES

It follows that the terms of the series in (2.7) are decreasing in absolute value if
j>[k/2]+ 1. The term corresponding to j = [k/2] + 1 is nonnegative. Therefore,
the sum of the series in (2.7) is larger than its first term. Consequently, we have
the inequality

1. (1 {1 _
An(k)>l_1{§k('z'k+1)n!(zk+n 1)+%(k£2)
—I-k(lk-i-l) (lk+n— 1) _ yk/2 k/2-
=%2 z(n_l)k/z(n?l)! = ]il) +%(k£2) ~knr(k/zl) (n = ).

The author wishes to conclude this note by expressing his appreciation to D. A.
Brannan for several helpful conversations during the preparation of this paper.
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