SOME n-DIMENSIONAL MANIFOLDS THAT HAVE THE SAME FUNDAMENTAL GROUP

R. H. Fox

The formula

$$x_1 \rightarrow x_1 \cos \theta + x_2 \sin \theta$$
, $x_2 \rightarrow -x_1 \sin \theta + x_2 \cos \theta$, $x_3 \rightarrow x_3$, ... $x_n \rightarrow x_n$

defines a rotation of n-dimensional euclidean space S about the (n-2)-dimensional subspace $A = \{(x_1, \dots, x_n) | x_1 = x_2 = 0\}$, which we shall denote by spin_{θ} . It maps the (n-1)-dimensional half-space

$$H_{\theta} = \{(x_1, \dots, x_n) | x_1 = \rho \cos \theta, x_2 = \rho \sin \theta, \rho \ge 0\}$$

onto the (n-1)-dimensional half-space $H_0 = \{(x_1, \dots, x_n) | x_1 \ge 0, x_2 = 0\}$. The point at infinity is supposed to be included, so that S and A are spheres and each H_{θ} is a cell whose boundary ∂H_{θ} is A. An (n - 2)-dimensional sphere L in the finite part of S will be called a deform-spun sphere if L ∩ A is an (n - 4)-dimensional sphere and if for each θ the intersection of L and H $_{\theta}$ is an (n - 3)-dimensional cell bounded by $L \cap A$. The deformation referred to is the closed isotopical deformation $K_{\theta} = \mathrm{spin}_{\theta} \ L \cap H_{\theta} \ (0 \leq \theta \leq 2\pi)$ of K_0 in H_0 . (During this deformation, the boundary $\partial K_0 = L \cap A$ remains fixed.) The spun sphere defined by Artin [1] in 1925 is, of course, the deform-spun sphere whose deformation is the stationary deformation $K_{\theta} = K_0$. If the deformation K_{θ} is stationary outside some (n - 1)-dimensional cell C whose boundary ∂C intersects K_0 at diametrically opposite points p, q of ∂C and may be described topologically inside C as the rotation of C about its axis \overline{pq} through the angle $q\theta$, then the deform-spun sphere $L = L_q$ is called a q-twist-spun sphere. (The rotation of S is the spin, and the rotation of C is the twist.) In another paper [3], I have shown that there exist deform-spun spheres that are not twist-spun spheres.

The ν -fold cyclic covering of S branched over L_q is a closed orientable n-dimensional manifold $\Sigma = \Sigma_{\nu,q}(K_0)$. The part of Σ that lies over L is an (n-2)-dimensional sphere Λ .

THEOREM. The fundamental group $\pi(\Sigma_{\nu,q})$ of $\Sigma_{\nu,q}$ depends (for given K_0) only on the greatest common divisor d of ν and q. In particular, $\Sigma_{\nu,q}$ is simply connected whenever d=1.

Received September 13, 1967.

A surprising consequence is that the ν -fold cyclic covering $\Sigma_{\nu,q}$ of the q-twist spin of K_0 has the same group as the q-fold cyclic covering $\Sigma_{q,\nu}$ of the ν -twist spin of K_0 . This suggests that, in fact, $\Sigma_{\nu,q}$ and $\Sigma_{q,\nu}$ might even be homeomorphic, but I don't know whether this is true.

Proof. Let $(x, a_1, \dots, a_n; r_1, \dots, r_n)$ be a canonical presentation of the group $G_0 = \pi(H_0 - K_0)$ of the knotted (n - 3)-dimensional cell K_0 in the (n - 1)-dimensional half-space H_0 . Then x represents a meridian of K_0 , which we take to lie outside C, and the elements a_j represent generators of the commutator subgroup G_0' of G_0 . We shall need the explicit form

$$\prod_{k} x^{\lambda(i,k)} a_{j(i,k)}^{\epsilon(i,k)} x^{-\lambda(i,k)}$$

of r_i.

We can obtain the group $G = \pi(S - L)$ of the q-twist-spun sphere L from G_0 by adjoining the relations $s_j = 1$ $(j = 1, \dots, n)$, where $s_j = x^q a_j x^{-q} \cdot a_j^{-1}$ [see the figure].

The group $\Gamma = \pi(\Sigma - \Lambda)$ of the ν -fold unbranched cyclic covering $\Sigma - \Lambda$ of S - L is a normal subgroup of G, and G/Γ is cyclic of order ν . The elements 1, x, ..., $x^{\nu-1}$ form a Schreier system of representatives, and the corresponding nontrivial generators are $\xi = x^{\nu}$ and

$$a_{j\beta} = x^{\beta} a_j x^{-\beta}$$
 (j = 1, ..., n; $\beta = 0$, ..., $\nu - 1$).

The corresponding presentation of Γ is (ξ , $\{a_{j\beta}\}$: $\{r_{i\alpha}\}$, $\{s_{j\beta}\}$), where

$$\mathbf{r}_{\mathrm{i}\alpha} = \prod_{k} \mathbf{a}_{\mathrm{j}(\mathrm{i},\mathrm{k})\,\lambda(\mathrm{i},\mathrm{k})}^{\mathrm{\epsilon}(\mathrm{i},\mathrm{k})} \qquad (\mathrm{i}=1,\,\cdots,\,\mathrm{m};\,\alpha=0,\,\cdots,\,\nu-1),$$

$$s_{j\beta} = a_{j\beta+q} a_{jq}^{-1}$$
 (j = 1, ..., n; $\beta = 0$, ..., $\nu - 1$).

From the relations $s_{j\beta} = 1$ we deduce that $a_{j\beta} = a_{j\beta+d} = a_{j\beta+2d} = \cdots$. Thus

$$\Gamma = |\xi, \{a_{j0}, a_{j1}, \dots, a_{jd-1}\}; \bar{r}_{i\alpha}|,$$

where

$$\bar{\mathbf{r}}_{i\alpha} = \prod_{k} \mathbf{a}_{\mathbf{j}(i,k)}^{\varepsilon(i,k)} \bar{\lambda}_{(i,k)},$$

 $\bar{\lambda}$ denoting the residue class of λ modulo d.

We can obtain the group $\pi(\Sigma)$ from Γ by adjoining the relation $\xi = 1$, and hence

$$\pi(\Sigma) = |\{\mathbf{a}_{j0}, \dots, \mathbf{a}_{jd-1}\}: \{\bar{\mathbf{r}}_{i\alpha}\}|.$$

Clearly, this presentation depends only on the presentation (x, $\{a_j\}$: $\{r_i\}$) of G_0 and the integer $d = (\nu, q)$.

When d = 1, the presentation of $\pi(\Sigma)$ just obtained simplifies to

$$\pi(\Sigma) = |\mathbf{a}_{10}, \dots, \mathbf{a}_{n0}: \tilde{\mathbf{r}}_{1}, \dots, \tilde{\mathbf{r}}_{m}|,$$

where

$$\tilde{\mathbf{r}}_{i} = \prod_{k} a_{j(i,k)0}^{\epsilon(i,k)}$$
.

But $\pi(H_0)$ is obtained from the group G_0 by adjoining the relation x = 1, and hence

$$\pi(\mathbf{H}_0) = \left| \mathbf{a}_1, \cdots, \mathbf{a}_n : \bar{\mathbf{r}}_1, \cdots, \bar{\mathbf{r}}_m \right|,$$

where

$$\bar{\mathbf{r}}_{\mathbf{i}} = \prod_{\mathbf{k}} \mathbf{a}_{\mathbf{j}(\mathbf{i},\mathbf{k})}^{\varepsilon(\mathbf{i},\mathbf{k})}.$$

An isomorphism of $\pi(\Sigma)$ onto $\pi(H_0)$ is therefore determined by the replacement of a_{j0} with a_j ($j=1,\cdots,n$). Since H_0 is simply connected, it follows that Σ must also be simply connected.

The manifolds Σ have been studied by Giffen [2]. Perhaps the most relevant of his results is that $\Sigma_{\nu,q}$ is always a homotopy sphere if $\nu \equiv \pm 1 \pmod{q}$.

REFERENCES

- 1. E. Artin, Zur Isotopie zweidimensionaler Flächen im R₄. Abh. Math. Sem. Univ. Hamburg 4 (1926), 174-177.
- 2. C. H. Giffen, The generalized Smith conjecture. Amer. J. Math. 88 (1966), 187-198.
- 3. R. H. Fox, Rolling. Bull. Amer. Math. Soc. 72 (1966), 162-164.

Kobe University, Japan and Princeton University Princeton, New Jersey 08540