NONLINEAR DIFFERENTIAL EQUATIONS IN
BANACH SPACES, AND APPLICATIONS

C. T. Taam

1. INTRODUCTION

In two recent papers [3], [5], the author and J. N. Welch investigated the differ-
ential equation

dx _
(*) Frle Ax +1(t, x)

in a Banach space X with regard to the existence, uniqueness, and stability of peri-
odic solutions, almost-periodic solutions, compact solutions, and bounded solutions,
together with the approximation of a compact solution in finite-dimensional subspaces
and continuity of a solution relative to a parameter. For the case of an unbounded
operator A, it was assumed, among other conditions, that f(t, x) lies in the domain
of A.

The purpose of this note is to establish the results obtained in [3] and [5] without
the assumption that f(t, x) lies in the domain of A, provided that A generates a
holomorphic semigroup. To illustrate the application of these results, we use them
and some recent results of K. Yosida [8], [9] on holomorphic semigroups to show
that, under suitable conditions, the nonlinear diffusion equation

n

2 .
(**) — = a(x) u + b(x) du +c(x)u + 27 d(t, x)u*
at aXZ ax 1=0

admits a unique stable solution u(t, x) that is (a) periodic in t, (b) almost-periodic in
t, (c) compact in t, or (d) bounded in t and is (i) periodic in x, (ii) almost-periodic
in x, (iii) bounded and uniformly continuous in x, (iv) vanishing at infinity in x,

(v) asymptotically periodic in x, or (vi) asymptotically almost-periodic in x. Thus
there are solutions of 24 different types.

In [4], an equation similar to (**) was treated with a more general nonlinear
term; but only mild solutions were established, and these are the limits of true solu-
tions of certain approximate equations. The solutions of the equation (**) obtained
in this note are true solutions. Recently, T. Kato reviewed the work that has been
done on equations of the form (*) by means of semigroups; the readers are referred
to his article [1] for further references.

2. THE MAIN RESULTS

Let R be the set of real numbers, R" the nonnegative real numbers. We make
the following three assumptions.
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(1) The unbounded closed linear operator A maps the Banach space X into itself,
and it is the infinitesimal generator of a semigroup {exp(tA),t >0} of class {Cqo}
such that

exp (ta)]| < Be™®'  forall t >0,

where a@ and B are positive constants; moreover, the semigroup has a holomorphic
extension in a sector of the complex plane containing the positive real axis [7, P.
254], and exp (-t) exp (tA) is bounded there.

(2) £(t, x) is a mapping from R X X to X such that (a) f(t, x) is a B.U.L. func-
tion [3, p. 851] in t; (b) the Lipschitz condition

I, x) - £, V| < 6t, p) [x-y] (x| < p and |y| < p)

holds for almost all t in R; here, for each fixed p, 6(t, p) is a real-valued B.U.L.
function in t, and for each a in R it is bounded on some finite interval a* <t < a;
(c) for each fixed negative h in some neighborhood of 0, the inequality

sup  |l£(t+h, x) - £t, x)|| < 4(t, p) |n|?
=) <p

holds for almost all t in R, and for every fixed t in R it holds for almost all nega-
tive h in some neighborhood of 0; here ¢ is a constant (0 < q < 1); for each p,

¢(t, p) is a real-valued B.U.L. function in t, and for each a in R it is bounded on
some finite interval a* <t < a; (d) for each a in R and each compact set C in X,
there is some interval a* <t < a of t such that f(t, x) maps [a*, a] X C into some
compact set.

(3) for some positive numbers p and r (r < 1),

0
sup B S exp (as) 6(t+s, p)ds < r,
t€ER -

0
sup S exp(-sA) i(t +s, 0)dslf < p(1 -r)/2.
teR =00

In contrast to the situation in [3] and [5], it is not assumed here that f(t, x) lies
in the domain of A. Instead, we have added 2(c), which requires that f(t, x) have a
certain weak Holder continuity from the left in t. These conditions allow £(t, x) to
be discontinuous in t. Also, A now generates a holomorphic semigroup. In a re-
cent note [2], C. I. Langenhop showed that the first condition in (3) implies that

t
lim sup% S 6(s, p)ds < _EY_,

t— 0

and this was used in [3] to establish the stability of solutions. For the definition of a
solution, see [3, p. 872].

THEOREM 1. Let conditions (1) to (3) be satisfied for some fixed p and r.
Then
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(i) there exists exactly one bounded solution x(t} of the differential equation
(*) satisfying the condition |x(- )"0o < p (and,in fact, |x(+) | < p);

(ii) x(t) is negatively unstable; in fact, every other solution y(t) of (*) that
exists for t < a for some a and " y(a) II < p must also satisfy || y(t) H > p for in-
finitely many t without lowey bounds;

(iii) x(t) is positively asymptotically stable; in fact, for each real number a,
there exist two positive numbers 6 and w such that, for any other solution y(t) of
(*) in [a, »), each of the two conditions

@) |[x@) -y@)|] <&, ® |[y®|] <pinla, a+o]

implies that |y(t)] <p in [a, ©) and |x(t) - y(t)| — 0 exponentially as t — «;

(iv) x(t) is peviodic of period 1 if f(t, x) and 6(t, p) are periodic of period 1
in t;

(v) x(t) is almost-periodic if f(t, x) and 6(t, p) are generalized almost-periodic
functions [3, p. 851] of t;

(vi) x(t) is compact if £(t, x) is a (BULC)™ function [5, p. 272] in t.

Remark. For the cases (iv) and (v), the numbers 6 and w in (iii) can be chosen
independent of the number a, as in [3, p. 867]. I, in addition, f is also jointly con-
tinuous in t and x, and 6 and ¢ are bounded in finite intervals of t, then Ax(t) and
dx(t)/dt are continuous in t. We should note that the theorem applies in the impor-
tant special case where the term £(t, x) in (*) does not depend on x.

Proof. In the same way as in the proof of Theorem 1 in [3] (see also a remark
there on p. 872), there exists a unique bounded continuous function x(t) on R to X
satisfying the conditions

(4) x(t) = SO exp(-sA) ft+s, x(t +8))ds (-0 <t <)
and
(5) "x(')"oo<p'

We now show that there exists a constant C such that
(6) Ixth++) - x(-)|, < C|h|? for all negative h sufficiently near 0.
In fact, from (4), (2b), (2¢c), and (5), we have for each such negative h the ihequality
| x(h + t) - x(t)|
(7) 0 0
<B S_oo exp(as) 6 (t+s, p)ds|xth + ) - x(+ )|, + 8 S_oo exp(as)(t+s, p)ds|h|9.

This inequality together with (3) implies (6).

Let 0 < d* < d. Since A is closed and exp (dA) maps X into the domain of A
[7, p. 254], the closed-graph theorem assures us that A exp(dA) is a bounded linear
operator with domain X. It follows that
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-d
A § exp (-sA) £(t + s, x(t + 5))ds
(8)
-d
= S A exp(-sA) i(t + s, x(t + s))ds (0 <t < )

is a meaningful and true statement. Since A generates a holomorphic semigroup,
H sA exp (sA) " is uniformly bounded in 0 < s <1 (see [7, p. 254]). Using this, (2b),
(2¢), and (6), and writing f(t + s, x(t + s)) in the form

f(t + s, x(t + 8)) - £(t, x(t + s)) + £(t, x(t + 5)) - 1(t, x(t)) + £(t, x(t)),

we find that

-d*
S A exp(-sA)f(t +s, x(t + s))ds
-d

(9)

-d¥
< § Lo o)+ 00 P s + [exp (@A) - exp(an)lat, x(0)]

for small d, where C* is some constant independent of t, d, and d*. Thus for each
t the first integral in (9) converges to 0 as d and d* tend to 0. Because A is a
closed linear operator, we have proved that

x(t) lies in the domain of A and

(10) Ax(t) = 1im (A exp(-sA) £(t + s, x(t +s))ds.

4]0 Y-

For each real number a, the functions 6(t, p) and ¥(t, p) are by hypothesis bounded
in some interval [a*, a] of t, and f(t, x(t)) maps [a*, a] into a compact set. It fol-
lows also that as d and d* tend to O, the first integral in (9) converges to 0 uni-
formly for all t in [a*, a]. The continuity of each integral in (8) (see [3, p. 872])
them implies that

(11) A x(t) is strongly measurable and continuous from the left.

From (9) and (10), we see that ”Ax(t) " is dominated by a B.U. L. function, and
hence

(12) Ax(t) is a B.U. L. function.

Using (10) and (11), we can verify in the same way as in [3, p. 873] that for al-
most all t the function x(t) has a derivative and satisfies the differential equation
(*), and that exp {(b - t)A} x(t) is absolutely continuous on every finite interval
[a, b]. Moreover,

ax(t)

it is a B.U. L. function.

(13)
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To prove that x(t) is absolutely continuous on finite intervals, take a positive num-
ber a. Some calculations show that, for a positive number h,

exp (aA) {x(t + h) - x(t)}

can be written as

0 t+h
(14) - S exp (-sA) A exp(aA)x(t)ds + S expi(a+t+h-s)A}i(s, x(s))ds,
-h t

and thus exp (aA)x(t) is absolutely continuous on finite intervals. Together with (13),
this implies that

t+h t+h
(15) exp(aA){x(t+h) - x(t)} = S exp(aA)x'(s)ds = exp(aA) S x'(s)ds.
t t

Letting a — 0, we see that x(t) is the indefinite integral (Bochner) of its derivative
and hence is absolutely continuous on finite intervals. This completes the proof of
part (i). In exactly the same way as in [3] and [5], we have parts (ii) to (vi).

It is easy to verify that Ax(t) and dx(t)/dt are continuous in t if, in addition,
i(t, x) is also jointly continuous in t and x, and 6(t, p) and ¢(t, p) are bounded in
finite intervals of t. (See the proof of (11), equation (*), and (15).)

By modifying the proof of part (i), we can establish the following local existence
and uniqueness theorem.

THEOREM 2. Let conditions (1) and(2) be satisfied, wheve o in (1) may be any
real number, Then, for each number a and each vector X, in the domain of A,
there exists a unique solution x(t) of the diffevential equation (*), on some interval
[a, bl, that satisfies the condition x(a) = x, and varies continuously with x,. The
solution can be continued to the right as far as it remains bounded. If, in addition,
i(t, x) is continuous in (t, x) and 6(t, p) and ¢(t, p) ave bounded in a <t < b, then
Ax(t) and dx(t)/dt ave continuous in [a, b].

Proof. When such a solution x(t) exists, it satisfies

t
(16)  x(t) = exp {(t - a)A}x, + S exp{(t - s)A} (s, x(s))ds (@ <t <D)

a

(see [3, p. 874]). On the other hand, by the usual method of successive approxima-
tion or by a contraction mapping, one can show that the integral equation (16) has a
unique continuous solution x(t) with x(a) = x5, on some interval [a, b], where b is
any number greater than a such that

£
(17) lexp{Gt - 2)A}x || +8B Sa exp {(s - t)a} (|| i(s, 0)| + (s, p)p)ds < p

for all t in [a, b], and where p is any fixed number larger than |x.|. Clearly, by
(17), |x@)|| <p in [a, b]. Since the first term on the right of (16) has a continuous
derivative in [a, b] and f(s, x(s)) is bounded almost everywhere in [a, b] by virtue
of (2b) and (2c), it is easy to verify that there exists a constant C such that
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Ix(t + h) - x(t)]
(18)

0
< Clh| + S h exp (-sA) {f(t+h+s, x(t +h+s)) - £t +s, x(t + s)) } ds
a-t-

for all sufficiently small negative h and all t such that a <t+h <t <b. Using the
part of (17) that involves 6, we find (much as in (7)) that there exists a constant C
such that

(19) Il x(t + h) - x(t) || <c |h|ql for all sufficiently small negative h

and for t such that a <t+h <t <b. Similarily, we prove that the integral in (16)
(and thus x(t)) lies in the domain of A, that A x(t) is continuous from the left and
Bochner-integrable in [a, b], that for almost all t in [a, b] the function x(t) has

a derivative and satisfies the equation (*), that dx(t)/dt is Bochner-integrable in

[a, b], and that exp {(b - t)A} x(t) and x(t) are absolutely continuous in [a, b]. The
continuity of x(t) relative to x, and the continuation of x(t) beyond b can be
treated as in the classical case.

3. APPLICATIONS

We now apply the main results to the nonlinear diffusion equation (**). For con-
venience, we write

C, for the class of all real-valued continuous functions defined on R that are
periodic with period 1;

C, for the class of all real-valued almost periodic continuous functions on R;

C3 for the class of all real-valued, bounded, uniformly continuous functions de-
fined on R;

C4 for the class of all real-valued continuous functions on R that vanish at in-
finity;

Cs for the class of all real-valued continuous functions on R that have the form
f+h (fe C;, he Cy)

C¢ for the class of all real-valued continuous functions on R that have the form
f+h (f € C,, he C4).

The functions in C¢ are called asymptotically almost periodic, while those in Cs
are asymptotically periodic. It should be noted that the representation of a function
in Co asasum f+h (f € C2, h € C4) is unique; the same holds in Cs5. By the
basic properties of almost periodic functions, it is easy to verify the following
proposition:

(20) The function spaces C1, C2, **+, C¢ are real commutative Banach algebras
undeyr the usual definition of addition, multiplication, multiplication by scalars, and
the uniform norm. They are also closed undeyr the operations of taking the maximum
or the minimum of two functions.

For each i (i=1, 2, -+, 6), consider the linear operator A on a subset of C; to
C; defined by
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du(x)

+ b(x) ——=

- 42 u(x)
(21) (Au) (x) = a(x) —== .

+ c(x)u(x),

where u, u', and u" belong to Cj , under the following condition:

(22) a(x), a'(x), b(x), and c(x) belong to C; for each i #4, and for i = 4 they are
bounded, continuous, real-valued functions on R; moreover, a(x) has a positive lower
bound ag, and c(x) has a negative upper bound -a@; the domain D(A) of A consists
of all functions u in C; such that u' and u" are also in Cj.

Let éi be the family of all complex-valued functions on R whose real and
imaginary parts are functions in C;. Just like the C;, the C; are complex commu-
tative Banach algebras. Clearly, A is defined in each C;, and its domain D(A) con-
sists of functions whose first and second derivatives are also in C;. We now show
that

(23) A generates a positive holomorphic semigroup {exp(tA), t >0} of class
{Co} in C;, and

lexpa)| < e ®t (t>0).

For the space Cs3, this was verified by Yosida [9].

For the space éz , let us observe that the equation

du(x)

(24) ru(x) + alx) ——== = f(x) (f € éz, A positive and constant)

has a unique solution u(x) in ;.

To see this, take the + sign in the equation. If there is a bounded solution u(x), then

0 0
(25) u(x) = S_oo exp (-7\ Ss a(xd_l;_ r)) ;g -i+— ;3 ds (-0 <x< ).

This can be verified by integration of the equation (24). On the other hand, we can
verify directly that the expression on the right of (25) defines a function u(x) on R
that satisfies (24). Moreover, u(x) is almost-periodic as we can see by using
Bochner’s criterion for almost-periodic functions. A similar treatment applies to
the other case. Clearly,

(26) 01+ ad/an) =t = ol < Je]/a,

where I is the identity operator and || || is the uniform norm. In the above argu-
ment, a can be replaced by va. It follows from the theorem of Hille, Phillips, and
Yosida [7] that the operator vad/dx generates a contraction group of operators of
class {Co} on the space C;. The domain of this operator is of course the family of
all functions in Cz whose first derivatives also lie in C; ; it is dense in C,. Ex-
pressions similar to (25) show that

(27) M+ vVad/dx)™'f >0 iftf>0,
that is, these resolvents are positive operators. By a recent result of Yosida [9]

(see also the proof there), (Vad/dx)? then generates a positive holomorphic con-
traction semigroup of class {Co} in € 2. Express A in the form
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(28) A= ( ax%)z (b - 2 ) L Ly o),

where the positive constant b* is taken so large that the coefficient of the second
term on the right of (28) is positive. Thus A can be considered as a sum of four
operators. We can prove (exactly as in Yosida’s paper [9]), using a recent perturba-
tion theorem of Yosida [8] and a product formula of Trotter [6], that A generates a
positive holomorphic contraction semigroup of class {CO } The above argument
applies to the operator (A + aI) as well. It follows that the identity

exp (tA) = exp (-at) exp {t(A + aI)} implies the inequality in (23).

For other spaces, (23) can be verified either in exactly the same way as in C,
above, or as in C (see [9]). We omit the details. It should be noted that A, the
resolvent R, A) at A > 0, and thus exp (tA), being the strong limit of (R(1, tA/n))n,
all map C; into C;.

The result (23) implies that for each f(x) in C;, u(t, x) = (exp (tA)f)(x) is the
unique solution of the equation

(29) 2 =Au for t>0 (u(0, x)=ix), fe ()

such that for each fixed t > 0, u(t, x) is a function in Ci . Moreover, u is infinitely
differentiable with respect to t for positive t, and it has a Taylor expansion

(30) u(t +h, x) = 2 _1,- h™APu(t, x)

in éi, for each positive t and small h. Thus u(t, x) is forwardly and backwardly
unique, in the sense that the vanishing of u(t, x) for all x at a fixed positive t im-
plies the same at each t > 0, with the consequence that £ =0. Since

92 " 2 3\
(31) (§+A) u(t, x) = (;-l_at) u(t, x)

in C and is jointly continuous in (t, x) in (0, =) ><R the theorem of Friedrichs’ and
Sobolev’s lemma (see [7]) imply that u(t, x) isa C* “function in (0, °°) X R whenever
condition (22) is satisfied and the coefficients a, b, and ¢ in A are C*-functions in
R.

Concerning the nonlinear terms in the equation (**), we now make the following
four assumptions.

(32) (a) For each t in R, the coefficients dy(t, x) (k =0, 1, 2, **-, n) are func-
tions in C; for i # 4, and when i =4, dg is in C4 and d;, d3, -+, d, are real-
valued bounded continuous functions in x. (b) For every h in some neighborhood of
0, the inequalities

Idk(t+h, x) - d, (¢, x)| < ¢(t) |Ih|]2 (®=0,1,2, -, n)

hold for all t in R, uniformly for x in R; here q is a constant (0 <q < 1), and ¢(t)
is a B. U. L. function, bounded on finite 1ntervals of t. (c) For each k, the uniform
norm " dy (¢, - )|| taken with respect to x in R is a B.U. L. function in t. (d) The

function
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n
f(t, u) = 2 dy(t, -)uk(-) (u(-) € C;)
k=0

is clearly a continuous mapping from R X C; to Cj; it satisfies a Lipschitz condition
of the type described in (2), with a coefficient 6(t, p) which we can take to be a con-
tinuous B.U.L. function in t, by virtue of (b) and (c). Let condition (3) be satisfied,
with 8 =1 for some positive numbers p and r, where A is now defined by (21) and
has the properties in (23).

Now it is easy to verify that the mapping f(t, u) from R X C; to C; and the oper-
ator A in (21) satisfy the conditions (1), (2), and (3) when X is taken to be C; and
B =1. By a solution of the equation (**) in an interval I we shall, for the sake of
simplicity in summarizing the results, mean a mapping u(t, - ) = u(t, x) from I into
C; such that it is a solution of (**) when the latter is considered as a differential
equation in the Banach space C;. Now Theorem 1 yields the following further re-
sult.

THEOREM 3. For some i (i=1, 2, ---, 8), let condition (32) be satisfied by
some p. Then, on -« <t < o, the differential equation (**) admits a unique uni-
formly bounded stable solution u(t, -) = ut, x) in C;. Movreover,

(i) if £ and 6 ave periodic of peviod 1 in t, then u(t, -) is periodic of peviod
1 int
(ii) if £ and 6 arve generalized almost-peviodic functions in t, then u(t, -) is
almost-periodic in t,
(iii) éf f(t, u) is compact in t for each u in Cj, then uft, -) is compact in t.

A local result of the type of Theorem 2 also holds for the equation (**). Clearly,
condition (32) can be relaxed. In the important special case, where the equation (¥*)
contains no nonlinear terms, we should note that condition (32) (under which Theorem
3 applies) becomes very simple.
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