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1. INTRODUCTION

The problem of determining the equivalence classes of embeddings of one mani-
fold into another has been successfully attacked in two general cases. In the first
case one assumes that the difference in the dimensions of the manifolds is suffi-
ciently large, and one shows that there exists a unique class of embeddings (see for
example [5], [12], or [13]). In the other case one singles out a particular class (gen-
erally called unknotted) and reduces its determination to some homotopy problem
(see [1], [6], [9], or [12]). There are scattered results of another nature, where one
has a unique embedding class even for small codimension (see [2], [3], [4], [7]).
This paper demonstrates yet another of the “scattered” results, namely:

THEOREM. Let M be a 2-spheve with an odd number of crosscaps. Let
f: M — M X [0, 1] be an embedding into the intevior of M X [0, 1]. Then f(M) can be
moved onto M X {1/2} by an ambient isotopy that leaves M X {0, 1} pointwise
fixed.

If M is any other closed connected 2-manifold, the above result is false. For
example, a torus T can be embedded in T X [0, 1] as the boundary of a tube around
a knot, and this can be done in infinitely many different ways.

2. DEFINITIONS AND A LEMMA

We work entirely in the combinatorial category; in fact, we work only with com-
pact combinatorial manifolds of dimension 2 or 3, with (possibly empty) boundary.
Thus an embedding f of a manifold M into a manifold N will be piecewise linear. It
is said to be proper if it carries the interior of M into the interior of N and the
boundary of M into the boundary of N (that is, if f(@M) = (aN) N £(M)).

Two embeddings f and g of M into N are said to be ambient isotopic if there
exists a continuous family F¢ (0 <t < 1) of homeomorphisms of N onto itself such
that ¥ is the identity map and F(f(M)) = g(M). (Thus ambient isotopy is a condi-
tion on the images, rather than on the functions themselves.)

Recall, finally, that a compact connected 2-manifold is a sphere with a number
m of holes and a number n of handles if it is orientable. If it is not orientable, it
has a number m of holes and a number n of crosscaps. The pair (m, n) and the
orientability specify the manifold up to homeomorphism (see, for example, [11]).

LEMMA. Let M be a compact, connected 2- manifold with vacuous boundary.
Let f: M — M X [0, 1] be a proper embedding. Then either f(M) separates M x {0}
from MX {1} in M X1, or £(M) is the boundary of a 3-dimensional submanifold of
M X1,

Proof. Triangulate M and M X [0, 1] so that f is a simplicial homeomorphism.
Now consider the induced homomorphism f: H,(M; Z,) — H,(M X [0, 1]; Z,). Since
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both groups are Z,, f  is either the zero homomorphism or the unique isomor-
phism. Considered as cycles, M and M X {0} generate the respective groups.
Thus the two cases are that f(M) is homologous to zero and that f(M) is homologous
to M X {0}, respectively. In the former case, there exists a 3-chain with boundary
f(M). The 3-simplexes of this chain make up a 3-manifold whose manifold boundary
is f(M). In the latter case, there exists a 3-chain with boundary f(M) - (M X {0}),
and the 3-simplexes of this chain make up a 3-manifold B with manifold boundary
B =f(M) U (M X {0}). The topological boundary of B in M X [0, 1] is then f(M);
therefore f(M) separates M X [0, 1] into B and (M X [0, 1]) - B. We need only show
that M X {1} is contained in (M X [0, 1]) - B; but this is clear, since otherwise

M x {1} would be part of the manifold boundary 8B of B.

3. PROOF OF THE THEOREM

Assume now that M is a sphere with an odd number of crosscaps and an empty
boundary, and that f is a proper embedding of M into M X [0, 1]. Thus, by the
lemma, the set f(M) either separates M x {0} from M x {1} or it is the boundary
of a 3-dimensional submanifold of M X [0, 1]. We show that the latter case does not
arise, by showing that f(M) is not the boundary of any 3-manifold.

According to a theorem of Pontrjagin [10], if M is the boundary of any 3-mani-
fold, then all the Stiefel-Whitney numbers of M are zero. (For a definition of the
Stiefel-Whitney numbers and an elegant proof of Pontrjagin’s theorem, see Milnor
[8, pp. 16-19].) Thus the projective plane P2 does not bound any 3-manifold, since
the Stiefel-Whitney number corresponding to the second Stiefel class W, is 1. If M
is a sphere with 2n + 1 crosscaps, then there exists a 3-manifold B whose boundary
is the disjoint union P2 U M. To see this, let B; be a 3-manifold bounded by a
sphere with 2n crosscaps (for example, let B; be the cartesian product of [0, 1]
with a sphere having n crosscaps and one hole). Attach B; to P2 X [0, 1] by iden-
tifying a disk on the boundary of B; with a disk on P2 X {1}. This produces B. If
M bounded a manifold C, then attaching C to B along M would give a manifold
bounded by P2. We conclude that f(M) cannot be the boundary of a 3-dimensional
submanifold of M X [0, 1], and hence that it separates M X {0} from M x {1}.

We now produce the desired isotopy. Choose ¢ (0 <& < 1/2) so small that £(M)
lies between M X {€} and M x {1}. Since f(M) separates these sets in M X [g, 1],
there exists (by [2]) a homeomorphism H of M X [g, 1] onto itself that carries
M x {1/2} onto f(M) and leaves M X {¢, 1} pointwise fixed. Extend H to be the
identity function on M X [0, £¢]. Choose a continuous family G, (0 <t < 1/2) of ho-
meomorphisms of M X [0, 1] onto itself such that

G, | Mx {0, 1} = identity,
G, = identity,

G 2Mx {1/2}) = Mx {&},

and let

Fi = HoG,oH "

(0<t<1/2),
F, = Gilyp0F ), (1/2<t<1).

Then Ft is the desired ambient isotopy, and the proof is complete.
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We remark that the usual definition of ambient isotopy in the combinatorial cate-
gory requires the map F: N XI — N X I, given by F(n, t) = Fi(n), to be piecewise
linear. The above theorem is true even with this definition of ambient isotopy; one
need only choose the family G; to be an ambient isotopy in the more restricted
sense.

We end with a corollary that extends the theorem. If M is a compact connected
2-manifold with boundary, we denote by M* the result of “completing” M to a mani-
fold without boundary by attaching a disk to each hole in M,

COROLLARY. Let M be a sphere with m holes and 2k + 1 crosscaps, and let £
be a proper embedding of M into M X (0, 1). Then (M) is ambient isotopic in
M % [0, 1] to M x {1/2} by an isotopy that does not move points of M x {0, 1}. In
particular, £ cavries components of 9M one-to-one into components of (M) X [0, 1].

Proof. We complete f to an embedding ¥ of M* in M* X (0, 1); this can be
done so that f*(M* - M) C (M* - M) X (0, 1). By the lemma, f*(M*) separates
M* x {0} from M* x {1}. Since

Mo, 1]) = M = £} (M x [0, 1]),

we see that f(M) separates M X {0} from M x {1} in M x [0, 1]. We may now use
the same isotopy as in the proof of the theorem to move (M) to M x {1/2}.
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