ON THE EXTENSION OF UNIFORMLY CONTINUOUS MAPPINGS
F. Grinbaum and E. H. Zarantonello

The subject and the methods of this article belong to a system of ideas that orig-
inated some thirty years ago around the problems of extending Lipschitzian map-
pings (M. D. Kirszbraun [3], R. A. Valentine [12], [13], E. J. Mickle [4], I. J. Schoen-
berg [11]) and of imbedding a metric space isometrically into another (I. J. Schoen-
berg [6] to [10], J. von Neumann and I. J. Schoenberg [5]). To gain a proper perspec-
tive of the basic question, it is convenient to distinguish three successive levels of
investigation:

Problem 1. Under what conditions can a uniformly continuous mapping f: & — 7
of a metric space into another be extended from its domain of definition to the whole
space & so that it remains uniformly continuous? (Throughout this paper, the nota-
tion f: ¥ — & means that @(f) € & and Z(f) C 7.)

The uniform continuity of a mapping f can be expressed by saying that its modu-
lus of continuity 6.(t), defined by

(1) 8¢(t) = sup || f(x;)f(x,) H (bars denote distance in either space),
X1 Xz S t, Xl ’ X2€ @(f)

has the property lim;_,q 6¢(t) = 0. Clearly, 6(t) is the smallest function of a non-
negative variable such that

(2) e )] < o= %,

In general, nothing can be said of 64(t) beyond the fact that it is a nonnegative, non-
decreasing function of t (0 <t < «); but if @(f) is metrically convex (that is, if for
each pair x;, x; € @ (f) and each choice of positive numbers s and t with
s+t=||x;x,| thereisa z suchthat |x;z| =t, ||zx,| =s), then &(t) is in addi-
tion subadditive. Suppose now that ¥ itself is metrically convex and that f admits
an extension f to.¥. Then

(3) 0,(t) < bp(t) (0 <t <),

and in particular 0;(t) admits a subadditive majorant approaching zero as t — 0.
This is therefore a necessary condition in order that Problem I have a solution. It
turns out that the condition is also sufficient if both ¥ and & are Euclidean spaces
(that is, complete real vector spaces with a scalar product). We remark that (3) is
equivalent to

(4) lix i) < ox(flx %) (%, x, € 20,

which in turn can be read as saying that T is an extension of f to ¥ that preserves
(4). It is clear that we would know how to solve Problem I any time we can find for
0 a majorant & approaching zero as t — 0 such that each mapping f satisfying

I £x;)£(x,) || < B(]|x;x,]|) on @(f) can be extended to the whole space without viola-
tion of the condition. These considerations lead us naturally to the following ques-
tion:
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Problem TI. What are the functions 6(t) (0 <t < «) such that each mapping
f: ¥ — J satisfying

(5) It i) | < o=y x,])  (xq, x, € D(8))

admits an extension to & that preserves (5)?

For 6(t) =t, (5) becomes a Lipschitz condition, and the problem of finding out
whether the function belongs to the class in question coincides with the problem,
originally treated by Kirszbraun [3], of extending Lipschitz functions to the whole
space without violating the individual Lipschitz condition they satisfy. Kirszbraun
proved that if both & and & are Euclidean spaces, such an extension is always pos-
sible, a conclusion also reached independently a few years later by Valentine [12],
[13]. It was also Valentine who first posed Problem II for real-valued functions, and
who solved it by showing that each nonnegative, nondecreasing, subadditive &(t) is a
solution [12, p. 107]. N. Aronszajn and P. Panitchpakdi [1] have shown that this re-
sult characterizes metrically convex spaces & having the property that the inter-
section of any family of pairwise intersecting balls is not empty, in the sense that
only for such spaces the solution of Problem II is the class of all nondecreasing sub-
additive functions 6 regardless of the metric space ¥. Among Euclidean spaces,
only those of dimension one have this property. The problem in the more general
context considered here was formulated by Mickle, who gave the question a new turn
by relating it technically and conceptually to the following problem.

Problem NI. For which functions 6(t) (0 <t < «) can the space ¥, remetrized
with the distance 6(||x,x,]|), be imbedded isometrically into 7 ?

This problem is equivalent (at least if & is Euclidean) to the problem of extend-
ing a mapping f:'# — J under preservation of the equality [£(x;)f(x,)| = &(||x;x2]).
It is the subject of a series of papers by Schoenberg ([6] to [10]) and by von Neumann
and Schoenberg [5], who, in a theory of classical elegance solved the question entirely
for Euclidean spaces by tying it to the theory of positive definite and completely
monotonic functions. Let us assume from now on that & is a Euclidean space, and,
as usual, let us write ”yl - Yz” in place of || Vi y2|| ; a’'Buclidean space of dimension
m shall be denoted by & ,,. By Schoenberg’s results, 6 is a solution of Problem III
if and only if

(6) 27 (03] x;xo ) + 6%(|| x5 %o [1) - 8%(||x;x; )1 £; €5 > 0
i,j#0
for all finite sets xy, x;, ***, X, in & and all sets of real numbers &, , &, ==+, £, .

Schoenberg further showed that if ¥ = & = &, the class of functions 8§ satisfying
(6) and hence solving Problem III is the class of all functions of the form

¢2 1/2
5(t) = {S w(s)ds} :

0
with Y(s) integrable and completely monotonic in 0 <t < « (that is,
(-1)2d™yY(t)/dt" > 0 for n=0, 1, 2, -+ and 0 <t < =), This class includes func-
2
tions such as t¥ (0 < v < 1), t/V1+t%, (1 - e )/t

The picture becomes much blurred but remains still recognizable when the con-
dition |£(x;)f(x;)| = 6(||x;x,|) is relaxed to the inequality (5) in Problem II. The
connection with quadratic forms (6) subsists in a weakened form: Any 0 such that
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(6) holds for nonnegative numbers &; is a solution of Problem II. It is not known
whether the converse holds, but it is unlikely. Moreover, as counterparts to inte-
grals of completely monotonic functions we have here nonnegative concave functions.
More precisely, any 6(t) such that 6%(Vt) is concave over 0 <t < « satisfies (6)
for nonnegative numbers £;, and hence it solves Problem II. It is by no means
clear that such functions 6 exhaust the class defined by (6) with nonnegative num-
bers &;, even when both & and J are the Hilbert space. This article is devoted to
the proofs of the above-stated facts concerning Problem II; the necessary and suffi-
cient condition that a uniformly continuous mapping be extendable to the whole space
mentioned in the discussion of Problem I follows then as a corollary to the remark
that any nonnegative, subadditive & admits a concave majorant.

LEMMA 1. In ovder that a mapping f: & — F salisfying
(7) ltx)ix)| < oz, x2])  (x1, %2 € 2(8)
admit an extension f to & with the same property, it is sufficient that any finitely

defined mapping g be so extendable to D(g) U {xq} for each xq ¢ D(g).

Proof, Assume the condition is satisfied, and let xg be a point not in @(f).
Denote by E any finite subset of 9 (f). By hypothesis, the closed bounded set
F C 7 of all points y such that

l£x) - ]| < 6(||xxq)l) for x € E

is not empty. Since FEl n FEZ = }?‘E1 UE, and 7 is Euclidean, {F} is a family

of weakly compact sets with the finite-intersection property. Hence there is at least
one point y, belonging to all sets Fr. The function

3 (x) (x € D),
f(x) =
Yo (x = Xo)

is an extension of f to @(f) U {xo} that preserves (7). Therefore it is possible to
add any point to @(f), and by Zermelo’s Axiom (or if one prefers, by Zorn’s Lemma),
we can extend f to the whole space without losing condition (7). (This is an adapta-
tion of an argument used by F. Browder [2, Theorem 2].)

Notation, For any metric space &, we denote by 2(¢) the class of all nonnega-
tive functions 6(t) of a nonnegative real variable satisfying

(8) 2 [o%(lxyxo ) + 6%l x;%0 ) - Gz(uxixj" Mg g >0,
i,j#0

for any choice of the finite set {x;}{’ C & and of the nonnegative reals {£,}7".

We can obtain significant indications of the meaning of relations (8) by consider-
ing a few special cases. When written for two points x¢, x; and nonvanishing £,
(8) says

(9) 26%(|| %, %,]) > 6%0).

Moreover, for three points x;, x;, X;, it can be written in the form



68 F. GRUNBAUM and E. H. ZARANTONELLO
2[6(]x,x0 1) &, - 6(llx%0 1) €212 + 2406([| %130 1) + 6([| x50 [I* - 6%(| x5 | )} £ &2
> 6%(0) (&2 + £5).

Since the function 6(t) = const. # 0 satisfies (8), 6(0) does not vanish in general, but—
as we see from (9)—if 5(t) vanishes at some t in the range of distances, then it
vanishes at t = 0 also. The equation &(||x; x,||) = 0 determines a relation between
pairs of points which, if it ever takes place, is an equivalence relation. Indeed, it is
reflexive, because, as we have seen, 6(|]x1 x1 |) = 8(0) = 0; it is reciprocal, by the
symmetry of the distance; and it is transitive, by virtue of (10), since if

6(llx, %0 ]) = 8(lx,%0]) = 0,

then -26%(|x;x,[)&,£2 > 0, and 6(||x1 x2||) = 0. Moreover, the value of & at
"xl X “ depends only on the equivalence classes to which the points belong. In fact,
if 6(||Zxz Xo|) = 0, we get from (10) the inequality

26%(||x1 %2 [ 63 + 2[6% (=1 %0 ) - 0%(|x; =, [D] €1 €2 > 0.

Dividing by £, (assumed to be different from zero) and letting £; approach zero,
one obtains the inequality &(|x;xz|) < 6(]|x; x0}), and since xo and x, play sym-
metrical roles, 8(|x;x,||) = 6(||x; xg||). Thus if in 6(|x;xq|) we replace x, by
any other point in its class, the value does not change. Incidentally, we have proved

(11) 5(“X1X2“)S 6("7{1"0“)"'5(""2"0“),

in the case when at least one of the three quantities involved is zero; if none van-
ishes, the same result follows from (10) if we take for £; and £, nonvanishing
values proportional to &(| X, X |) and &( ||x1 X, |), respectively. Therefore, if
6(0) = 0, &(||x,x,|) is a distance in the space of equivalence classes.

We remark, however, that the vanishing of a 6 € 2(%).at points other than zero
without vanishing identically is an exception possible only in the presence of a cer-
tain pathology in &. Such a situation cannot occur if some sphere

Sp(x0) = {x € &, o] =0}

of positive radius is not totally disconnected; for, in this case, if 6(p) =0 (p > 0),
the mutual distances of the points in the sphere fill out a closed interval (0, t;) of
nonvanishing length, and in such an interval (and hence everywhere) 6 vanishes iden-
tically, by (11). Of all Euclidean spaces &#,,, &; is the only one with totally dis-
connected spheres and the only one where 6’s with the above behavior exist
(6(t) = |sin t|, for example).

LEMMA 2. If o(t) € 2(%), then each mapping f: ¥ — T satisfying (1) admits
an extension to & meeling the same requivements.

Proof. In view of Lemma 1, it suffices to show that if x,, x,, ---, X, and
Vi, Y2, -, ¥n are points in & and & such that

(12) lvi - w3l < otl=ixg) G, i=1,2 -, n),
and if xg #x; (i=1, 2, ---, n), then there is a yg € 4 for which

(13) Iv: - voll < allxx0l) (=1, 2, -, n).
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To prove this, assume first that 6(t) vanishes at no point other than 0, and consider
the real-valued function

) Iy - v
PO = S el

This is a continuous function tending to infinity with y. Moreover, its infimum is not
smaller than that of its restriction to the finite-dimensional linear space spanned by
Y1, Y2, ***, ¥n, and hence is attained at a point yg € 4. Thus

. lys - vl Iy; - vol
g =inf sup ——— = u —_—
y i=1,~-,n 6(||xix0||) i=l,,n 6(“xix0||)

The point is to prove that p < 1. Assume the y; are numbered so that the supremum
of ||ly; - voll/6(lxix0|) is attained for i =1, 2, ---, m (m <n). Then

(14) lvi - voll = wol|xixol) (G=1,2, -, m),
(15) ”yi-yO” < [.L(‘S(”xixou) (i=m+1, m+2 ---,n).
These relations make it plain that y; must belong to the convex hull of

Y15 Y2, ***s Ym, for otherwise we could bring it simultaneously closer to all these
points without affecting inequalities (15), contrary to the minimum property of u.

Hence there exist nonnegative numbers §,, §,, -+, £ such that
m m

(16) Yo = 2 £:Y;» 1=2 €.
i=1 i=1

From (12) and (14), we get for i, j =1, 2, ---, m the estimates
(Ixix; ) > llvs - v301% = lyi - voll2+ lyj - voll® - 265; - v, ¥; - ¥0)
= p2(6%(|| x5 %0 ) + 52(||xjx0||)) - 2(y; - Yo, Y5 - Yo)»

which multiplied by &; & 3 and added together yield the inequality

2

2 Gz(nxixj | 365> Wi (0%([lx;xo ) + GZ(HXJ'XO [ ))‘5153') -2 2 £(vi - ¥o)
i=1

i,j=1 i,j=1

The last term vanishes, by (16), and the rest says that u < 1 by virtue of (8). If &(t)
vanishes at other points besides t = 0, we pass to the space & of equivalence classes
modulo the relation &(||x;x,|) = 0 under the semimetric

1%, %, = _inf SR
xlexl, x2€x2
and apply the above result.

LEMMA 3. If 6(t) belongs to 2(%), then so does 8, (t) = min (6(t), A), for each
A >0,

Proof. Assume the condition is fulfilled, and write
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2 [o5(lx;xo ) + 05Xl x5 %0 ) - 05(11%; %515 £
i,j#0
= (Z'+ ") o) + o2lllxymoll) - o2(lIix; 1815,

where the sum ) extends over the indices i, j with

max (6| x;x0[|), 6(]|x;%0]])) < 2,

and the sum 2 over the indices with max(8(|) x: %0 [|), (] XX 1) >x. We can put
the first sum into the form

2 16% (e o) + 2o ) - 0%l Dl

+ E! [Gz(llxixj ") - Gf(llxixj " )] Si g_]

and conclude that it is nonnegative by hypothesis. The second sum is also nonnega-
tive, because all its terms are nonnegative. The proof is complete.

LEMMA 4. If 8(t) belongs to 2(), then so does any function of the form
8l )(t) = (K (82(t)))1/2, where Kk (u) is a nonnegative concave function on (0, ).

Proof. Let k(u) be any nonnegative concave function on (0, ), and assume for a
moment that it is twice continuously differentiable on the open positive real axis.
Such a function is necessarily nondecreasing, and both the limits

kK(0+) = lim k(u) and K'(+0) = lim «'(u)
ulo u-— 00

exist and are finite and nonnegative. By integration by parts,

u u

K(0+)+S kK'(s)ds = k(0+) + sk'(s)
0

K (u)

- Su sk"(s)ds

0 0

]

k(0+) +uk'(u) - Su s k" (s)ds
0

u

€(04) +ur () - | skn(s)s - Smul{"(s)ds
0 u

1l

k(04) + u K (o) - Sooinf(u, s) k" (s)ds.
0

Therefore

@)% = k(6°@) = x(0 o) 620 - | (6 — ()% k" (s)ds
"0 = k(67 = kO + € ()67 - | 0,0 k" ()as

and consequently
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2 16 (xyxo 107 + (6 (%0 107 - (6% ([l ;)] 8 &

i,j#0

=x(0+)(2§i) + Kk'(+w) 20 [6 ("x XOH)+62(HX x| - 6%(] x, x .]|)]gi,§j

1,j#0

5 I (6 ol + 65 ol - 7 (el g s,

A simple inspection and an application of Lemma 3 show that all terms on the right
are nonnegative, and therefore the sum on the left is nonnegative. Thus the lemma
has been proved under the additional condition that x(u) be of class C2(0 +, ©), This
restriction, however, can be removed at once by a limiting process, upon observing
that the function

k) = § k@/vgglos Y >0

constructed from any nonnegative concave function x(u) with a nonnegative mollifier
¢c(u) is again nonnegative and concave, belongs to C®(0+, ), and converges to & (u)
uniformly over any finite interval away from zero, as ¢ — 0.

We can obtain specific results from Lemma 4 by applying it to Euclidean spaces
(¥ = o,,). A typical element of 2(#,,) is the function 6(t) = t, since clearly

2
27 & (x; - %)

an) 2 [ - xol® + g - o 1® - g - 21855 = ) 20

i,j#0

> 0.

Therefore all functions of the form 6(t) = (k (t2))!/2 with « nonnegative and concave
belong to 2(s# ) (m =1, 2, -.-, «). This class of functions will be denoted by .

Other elements of 2( Jc”m) already at hand are the functions

(18) 6®) = | (- aptu)de@)  (1<m<),
0

where a(u) is a nondecreasing bounded function and

0t = 1 (2) 100 (3]

2

m-2
2

(T" indicates the Gamma function, and J, the Bessel function of order v). Schoenberg
[9] has shown that quadratic forms (8) assoc1ated with these functions are nonnegative
definite (no restriction on the signs of the &; ) and that therefore the functions

o( "XI X5 ll) are new metrics for o, turnmg it into a new space isometrically im-
beddable in &, . For o, we have in place of (18) the functions

t2 1/2
(19) 5(t) = { § w<s)as} ,
0
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where Y is any completely monotonic function in (04, ) (see the introductory dis-
cussion); these are all the functions with associated nonnegative forms (8) over

H ' . It is not yet clear what classes of functions we obtain by composing the above
classes with nonnegative concave functions according to the prescription of Lemma
4. We can easily see that for &#» we do not get out of the previously found class of
functions (k(t2))1/2 (with k nonnegative and concave); but this is not the case for
o, , where composition with functions such as |sin t| adds fresh material to our
knowledge.

We note that for Euclidean spaces, (11) implies
(20) max[6(|t; - tp]), 8(t; +t5)] < 6(t;) + 6(t,),

a condition a bit stronger than subadditivity but not quite as strong as subadditivity
and monotonicity; let ¢ denote the class of functions 6 satisfying (20). Since (8)
becomes more restrictive in larger spaces, part of our discussion can be sum-
marized as follows:

(21) G'D 2(H1) D 2(H3)D + D 2(Hy) D K.

We know no alternate way of characterizing classes 2(,,), nor do we know whether
all inclusions in (21) are proper. The combination of (21) with Lemma 2 leads to the
following theorem.

THEOREM 1. Let 8(t) = (k(t2))1/2 | with k(t) nonnegative and concave over
(0+, ©), and let f: & — T be a mapping of a Euclidean space into another, satisfying
the condition

(22) l£x1) - £) || < 6([[x; - x2[)  x1, %2 € D(H)).

Then £ admits an extension I to the whole space & which also satisfies (22).

Now we turn to the problem of extending uniformly continuous functions, which
we discussed at the beginning of this article; we shall assume that both ¥ and
are Euclidean spaces. As we have seen, in order that a uniformly continuous map-
ping f: & — J be extendable it is necessary that its modulus of continuity 6(t) ad-
mit a subadditive majorant 3(t) with lim, 5(t) = 0. Let us show that this condi-
tion is also sufficient. To this end we need a lemma.

LEMMA 5. For each nonnegative, subadditive function 6(t) (0 <t < =) there is
a nonnegative, concave 0(t) such that

(23) sup  6(s) < 6(t) < 2 sup &(s).
0<s<t 0<s<t

Proof. Let 6*(t) = supg g« 0(s). Clearly, 6*(t) is nonnegative and does not de-
crease, and since -

<3+(i:1 +t,) = sup o(s) sup 6(s; +s3) < sup {8(sy) + 8(s,) }
0<s<t;+t, 0<s; <ty 0<s; <t

6*(t,) + 0'(t,),

it is .subadditive. Define 5(t) as the smallest concave majorant of &(t); that is, set



ON THE EXTENSION OF UNIFORMLY CONTINUOUS MAPPINGS 73

(24) 8(t) = sup 23 a, O(t),

ai,ti 1

the sup being taken with regard to all pairs of finite sets of nonnegative reals
a;, ay, -, 0 and t;, t, -+, i such that

2ya; =1 and 2iat <t.
i i

It is obvious that 3(t) is nonnegative and concave and that it satisfies the first in-
equality (23). To prove that it also satisfies the second, we avail ourselves of the
fact that it is indifferent whether on the left of (24) one uses 6(t) or &6%(t). Since
6*(t) is nondecreasing,

where the square brackets indicate “integral part of”. By the subadditivity of 67(t)
we see that if 2J a; =1 and 27 a;t; <t, then

t

Pt Pl 5 ]+ (o)

J 3

t.
S Z‘/al(——l———+ 1) 6+(2 aJtJ) = 25+( EOZJtJ) S 26+(t).
1 jaj tj J J

which is another form of the inequality we seek.

Resuming the interrupted argument, we suppose that the modulus of continuity
6¢(t) of a uniformly continuous mapping f has a subadditive majorant 6(t) approach-

ing zero as t — 0. Then, by the lemma above, 0(t) also tends to zero as t — 0, and
(25) [£Gx)) - 1) < B(llx; - x,01)  (xp, x, € D).

A simple calculation shows that the property of being nonnegative and concave is

transferred from o(t) to (5(t1/2))2 , and that in consequence 3(t) belongs to the
class . Hence, by Theorem 1, there exists an f(x) defined all over ¢, coinciding
with f(x) on @(f), and such that

1) - )| < Blx, - () mp € 9).

Clearly, fisa uniformly contimious extension of f. Summing up:

THEOREM 2. In ovdey that a uniformly continuous mapping f: ¥ — J of a
Euclidean space into anothey have a uniformly continuous extension to the whole
space &, it is necessary and sufficient that its modulus of continuity 0:(t) admit a
subadditive majovant 6(t) approaching zevo as t — 0.

A useful corollary can be derived from the observation that &{t) is subadditive
if @(f) is convex:
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COROLLARY. Any uniformly continuous mapping {: & — I of a Euclidean

Sspace into another, defined over a convex set, admits a uniformly continuous exten-
sion to the whole space, with a modulus of continuity not lavger than twice the
modulus of continuity of the oviginal function.

For finite-dimensional 4’s, Theorem 2 may be considered as implicitly con-

tained in the results of Valentine [12] that we mentioned in the introduction. It is in-
structive to observe that the majorizing condition of Theorem 2 is equivalent to
lim sup; _, o« O¢(t)/t < [1, Theorem 1].

10.

11.

12,

13.
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