GEOMETRIC CHARACTERIZATION OF
DIFFERENTIABLE MANIFOLDS IN EUCLIDEAN SPACE, II

Herman Gluck

1. INTRODUCTION

In the predecessor [1] to this paper, I described a geometnc characterization of
one- and two-dimensional differentiable manifolds of class C! in Euclidean space.
The general case will be given in this paper, which can be read independently of [1].

The one-dimensional result is the following.

PROTOTYPE. Let M be a one-dimensional topological manifold in R™. Then
M is a Cl-manifold in R™ if and only if the secant map

T:MXM - A — pol

admits a continuous extension ovev all of M X M.

Here A denotes the diagonal {(x, x): x € M} of M XM, and the secant map =
assigns to each pair (x, y) of distinct points of M the line through the origin in R™
(and thus an element of projective space Pn-l) that is parallel to the secant line
through x and y.

The direct generalization of the secant map to the case of a k-dimensional mani-
fold M in R™ would be a map Z that assigns to each (k + 1)-tuple (xq, x;, ***, X3)
of linearly independent points of M the k-plane through the origin in R™ (and thus
an element of the Grassmann manifold Gn,k) parallel to the secant k-plane through
Xg, X1, ***» X . This is fine.

. The direct generalization of the prototype theorem would then say that a k-
dimensional topological manifold M in R™ is a C!-manifold if and only if the map =
admits a contmuous extension over the diagonal A = {(x, x, **+, X): X € M} of
M XM X -+ XM = (M)Xt! . But this is incorrect!

The difficulty is already apparent in the two-dimensional case. Look at three
linearly independent points x4, X;, X, that approach a single point x on a two-
sphere. If the approach is “conventional” then the secant plane through xg, x; and
X approaches the tangent plane to the two-sphere at x. But if xg, X3, X2 and x all
lie on an equator, then the secant plane through x, x; and x, contains the equator,
and is therefore orthogonal to the tangent plane at x. So there is no hope for con-
tinuously extending the generalized secant map over the diagonal, even when the
manifold is known to be differentiable.

What goes wrong? As the three points x;, x;, X, converge to x on the two-
sphere, the three edges of the triangle xgx; X, approach the tangent plane at x. But
the mere fact that the three edges of a triangle make small angles with a given plane
does not imply that the triangle itself makes a small angle with the plane.
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It is precisely this sort of behavior which makes the study of surface area so
much more difficult than that of arc length. Schwarz’s example of a sequence of
polyhedral approximations to a finite cylinder, in which the surface areas of the ap-
proximating polyhedra grow without bound, is based on just this phenomenon of small
triangles inscribed in a surface making a large angle with nearby tangent planes to
the surface.

This peculiar behavior can nevertheless be controlled. An easy calculation shows
that if the three edges of an equilateral triangle make small angles with a given plane,
then the triangle itself makes a small angle with the plane. The worse the shape of a
triangle, the more eccentric its behavior can be. What is needed is a preliminary
restriction on the shape of triangles (or more generally, k-simplexes). Definition
2.1 introduces a shape function ¢ for simplexes, which will be zero if and only if the
simplex is degenerate. When the shape of simplexes under consideration is bounded
away from zero, I will show that if each edge of such a k-simplex makes a sufficient-
ly small angle with a k-plane, then the simplex itself makes a small angle with the
k-plane (Theorems 4.1 and 4.4).

If M is a k-dimensional topological manifold in R™, let (M)k*! denote the
(k + 1)-fold cartesian product M X M X .-- X M. If 0y is any real number, let
(M)%:Jrl denote the set of all (k + 1)-tuples (xg, X3, ***, X}) of points of M that form

a k- 51mp1ex whose shape function is greater than oy. If 0y is negative, then
(M) is simply all of (M) k+] , while (M)kJrl consists of those (k + 1)-tuples whose

pomts are linearly independent in R™, and which therefore form nondegenerate k-
simplexes.

The goal of this paper is to prove the following characterization of C1l-manifolds
in R™. .

MAIN THEOREM. Let M be a k-dimensional topological manifold in R™, and
let 05> 0 be a veal numbeyr (which for technical veasons must not exceed 1/Vk).
Then M is a Cl-manifold in R® if and only if the genevalized secant map

k+1
2 (M) — Gn,k

k+
admits a continuous extension over (M)0 ! U A.

The necessity of the condition persists without the restriction that o, < 1/ VK.

The remainder of this paper is divided into two parts. Part I considers the shape
of a simplex and the distribution of simplexes of good shape on a topological manifold
in R™. Part II uses the geometrical information from Part I to derive the Main
Theorem.

I have benefited greatly from several conversations with L. V. Toralballa, who
has used the technique of controlling the shape of triangles in his study of surface
area.
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I. SMPLEXES IN EUCLIDEAN SPACE
2. THE SHAPE OF A SIMPLEX

If xg, X3, **, Xy are linearly independent points in Euclidean n-space R", their
convex hull AK is called a k-simplex. If these points are arbitrarily chosen in R™,
I shall still call their convex hull Ak, together with the distinguished elements
Xg, X1, ***, Xk, a k-simplex. Distinguishing the vertices permits their recovery in
the degenerate case. I shall always assume that k> 1.

Degenerate or not, Ak lies in some k-plane in R® provided n > k, and applying
a rigid motion to R™, we may assume that Ak c Rk, Suppose for the moment that
not all the vertices of AK coincide. For each pair of distinct vertices x; and x;, let
L;; denote the line through the origin in Rk parallel to the edge x;xj. Then Ljj is
an element of the projective space Pk-! , in which we use the angle between lines as
a metric.

The shape of a simplex depends on the distribution of the directions of its edges,
or what is the same, on the distribution of the L;j in Pk-1, Each point L € Pk-1
lies at a certain (minimum) distance from the set {Lij: X; # xJ-}. The maximum of
these distances, taken over all L in PX¥-l measures the distribution of the points
L;; in PX-1. This maximum, 6(AK), is actually assumed and is bounded:

0 < 6(ak) < a/2.

There is a line L through the origin in RX which makes an angle at least 6(AX) with
each edge of the simplex AK, and 6(AK) is the largest number for which such a
statement is true.

A k-simplex AKX not all of whose vertices coincide is degenerate if and only if
6(AK) = 7/2. If all of the vertices coincide, {Lij: X; # xj} is an empty set and we
then arbitrarily put 6(AK) = 7/2.

It Ak is degenerate, it is contained in more than one k-plane in R™. But any
two of these planes can be related by a rigid motion that is the identity on Ak;
therefore none of the above measurements depends on such a choice.

Definition 2.1. ¥ AK is a (possibly degenerate) k-simplex in R® (n >k > 1),
then the quantity

o(AK) = cos 6(AK)

will be called the skZape of the simplex Ak,

This definition assigns the shape 0 to degenerate simplexes (and only to these),
and the “better” a simplex, the larger its shape function. If all the vertices
Xg, X1, *-+, X of AK are linearly independent in R™, then ¢ (AK) depends continu-
ously on the variables xg, X;, ***, Xx. This is no longer true if AK is degenerate,
for a degenerate simplex can be approached by nondegenerate simplexes of reason-
ably good shape.

The above definition of shape is somewhat different from others appearing in the
literature (in fact, it is more liberal). A tall, skinny isosceles triangle, for example,
is acute and therefore has shape ¢ > 1/V2. An alternate definition, such as the in-
radius over the length of the longest side, would give such a triangle a shape meas-
ure close to zero. Thus such a triangle would have roughly the same shape measure
as one with an angle close to 180°. For our purposes, the tall skinny isosceles
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triangle, while not as good as an equilateral triangle, is nevertheless much better
than a very obtuse triangle, because the directions of its edges are better distributed.
This distinction is crucial.

3. ANGLES BETWEEN k-PLANES IN R"

In this section I collect some useful facts about angles in Euclidean space. The
discussion is purposely sketchy, because the material is straightforward; more de-
tails may be found in [2].

Let P and Q be k-planes in R™, which for our purposes may be assumed to
pass through the origin. Then there exist orthonormal bases {u 1, Uz, ***, uk} and
{vy, v, s, v } for P and Q such that

<ui,vj>=0 for i #j
and
(uy, vi) > (up, vy ) > o > (g, vy ) > 0.

Such bases are said to be in normal form. The k angles

0 <o <gp < S <7/2
such that

COS ¢; = <ui,Vi>

are called the principal angles between P and Q. They depend only on P and Q,
and they completely characterize the relative position of these two k-planes in R™.
Unlike the principal angles, the bases in normal form for P and Q are not com-
pletely determined by the above conditions. For example, uj; and v; may simultane-
ously (or individually, if ¢; = 7/2) be replaced by their negatives for assorted values
of i. This is the only ambiguity possible if all the principal angles are distinct, but
more variations can occur if some of the successive principal angles coincide.

The largest principal angle ¢i between P and Q is also the largest angle that
any line in P makes with Q, the line through uj, making such an angle with Q. It is
similarly the largest angle that any line in Q makes with P, the line through v
making such an angle with P.

If we desire to find a single angle ¢ that might reasonably be called fZe angle
between the k-planes P and Q, then the appropriate choice is the angle between 0
and 7/2 whose cosine is the reduction factor for p-dimensional measure under
orthogonal projection of P into Q, or equivalently of Q into P. The correctness of
such a choice is borne out by two facts:

(1) The definition extends the usual definitions for the case k = 1 and also for the
case in which P and Q intersect in a (k - 1)-plane.

(2) The k-planes P and Q correspond to one-dimensional subspaces L(P) and
L(Q) in the exterior product AXR™, and when AKR?™ is given the natural inner prod-
uct structure induced from R™, the angle between L(P) and L(Q) is precisely the
angle ¢ defined above. Thus ¢ is also the distance between P and Q in the metric
on the Grassmann manifold G, ;. induced by the “inclusion” of Gn,k in the projec-

n

-1
tive space P k of AKR™,
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The angle ¢ between P and Q is related to the principal angles by the formula
(3.1) cos ¢ = (cos ¢;)(cos ¢,) >+ (cos ¢,).
The largest principal angle ¢, between P and Q provides a crude metric on Gn’k

that is nevertheless fopologically equivalent to the natural one mentioned above, be-
cause formula (3.1) implies that

(3.2)

= e-

< b <6

4, ANGLES BETWEEN A k-SIMPLEX AND A k-PLANE

THEOREM 4.1, Let AKX be a nondegenerate k-simplex in R™ each of whose
edges makes an angle at most € (¢ < w/2) with some unknown k-plane Q in R™.
Then every line L in the k-plane P spanned by AKX makes an angle $(L) with Q
subject to the inequalily

sin sin g

sin ¢(L) < =——= (A

We may assume that both the k-plane P spanned by AK and the k-plane Q pass
through the origin. Let {ul y U,y oo uk} and {vl, Va2, ', vk} be bases in normal
form for P and Q. The principal angles

¢ < ¢y <o < P

between P and Q are then given by the formulas

COs ¢i = <ui, Vi>.

The largest angle that any line L in P makes with Q is precisely the largest prin-
cipal angle ¢, ; to prove the theorem we must therefore show that

sin ¢
o(Ak)

Recall that ¢ (AK) = cos G(Ak) and that according to the construction of 0(AY) in
Section 2, some edge E of the simplex AK must make an angle not greater than
6(AK) with the vector uy in P. Let u be a ! unit vector in P parallel to E, chosen
so that u also makes an angle at most 0(AX) with uy. Since {u;, uy, ---, w } is
an orthonormal basis for P, we can write

sin ¢ <

k

(4.2) u = 27 {cos 6;)u;,
1

where

(4.3) 27 cos? 6; =1

and 6, < 6(aK).
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According to hypothesis, the edge E of AX makes an angle ¢ <& with Q, or
what is the same, with its orthogonal projection on Q. Thus the vector u also makes
an angle « < ¢ with its orthogonal projection v on Q. Since the given bases for P
and Q are in normal form, the orthogonal projection of u; on Q is (cos ¢;)v;. Now
project both sides of equation (4.2) orthogonally onto Q; this gives the equation

k
= Zl; (cos 0, cos ¢;)v; .

The angle o between u and v is given by

cos? a = <v v) 27 cos? 6?icos2 ¢ .

Since a <& < 71/2,
Kk

27 cos? 8 cos? @; -
1

2 2

cos” € 5 cOos“ «

Furthermore,
k k-1

Zl> cos? 0 cos? ¢; < Zl> cos? 0;+ cos? 01 cos® N

= sin® 0y + cos® 01 cos® b1 s
by virtue of (4.3). Thus
cos?e < sin? 0y + cos? 0 cos? ¢, .
This is equivalent to the inequality
cos? 01 sin® ¢ < sin® ¢ .

Since 6 < 0 (AK) < 7/2 (because AK is nondegenerate), cos 6, # 0 and the above
inequality is therefore equivalent to

sin g
cos 0y

sin ¢ <

Since 0 < 0 (AK) < /2, cos 6 > cos B(Ak) = U(Ak), and the above inequality im-
plies that

sing |

o (ak)’

as we have already observed, this implies the theorem. The following is an easy
corollary.

THEOREM 4.4. Let the k-plane Q C R" and the real number gg > 0 be given.
For every ¢ (0 <e <u/2) theve exists a 6 > 0 such that if AK is a k- simplex in

sin ¢, <
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R™ with shape o (LK) > 0o, each of whose edges makes an angle at most &6 with Q,
then the k-plane P spanned by AX makes an angle less than £ with Q.

Simply choose & > 0 so small that

sin & .
70 < sin(e/k).

Now, if each edge of AK makes an angle at most 6 with Q, then by Theorem 4.1, the
largest principal angle ¢, between P and Q satisfies

sin 6 < sin 6 < sin (/) .

o (AX) Co

sin ¢k S

Since ¢ < 7/2,
¢k < S/k.

But then, by formula (3.2), the angle ¢ between P and Q satisfies the condition

¢ < k¢ <e;

this proves the theorem.

5. ORTHOGONAL PARTURITION

In order to show that inscribed k-simplexes of good shape are well distributed
on a k-dimensional topological manifold in R™, I need some techniques for building
simplexes of good shape from others of smaller dimension.

Let AT be a nondegenerate r-simplex in R™ (n > r). Single out any one of its
vertices, and name the vertices xp, x;, ***, X, so that x,. is the distinguished one.
Let P™"F be the (n - r)-plane through x,. that is orthogonal to the r-plane P*
spanned by AT. No vertex of AT other than x, lies in P™°F,

Now let x,,; be any point of P™* other than %, . Then the points
Xg, X1, ***, Xy, Xp41 are the vertices of a nondegenerate (r + 1)-simplex AT*! in

R™ that has AT as a face. This construction of A™'! from AT will be referred to
as orthogonal parturition (applied to the vertex x.). The problem for this section is
to compare the shape o(AT*1l) of AT*! (which depends only on AT and the length of
the edge x,.x,,;) with the shape o(AT) of AT.

THEOREM 5.1. If the edge x_ X, of AT g ovthogonal to the k- simplex AT
spanned by Xg, X1, ***, X, then

r+l) S o (AT)

2 ot

and this inequality is best possible, with the given information.

o(A

Using a preliminary rigid motion of R”, if necessary, we may assume that
AT c RY and AT c R™ 1, For each pair of distinct indices i # j between 0 and
r+1, let Lij denote the line through the origin in R¥t! parallel to the edge X;iX;j of
ATtl . The angle 8(A**1) measures the distribution of these lines in the sense of
Section 2, and o(AT*1) = cos @(ATH1),
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According to the information given, the only lines about which we have definite
knowledge are the lines L jj (0 <1, j <) corresponding to the edges of A", and the
“vertical” line L, ;] corresponding to the edge Xrxy+1 of AT+l which is ortho-
gonal to the face AT. Let the angle 6,4+] measure the distribution of these lines
(again in the sense of Section 2), and let 0 ,.4] = cos 6.41. Since all of the edges of
AT+l are better distributed than some of them,

+1
Q(Ar )S 9r+1 ’
and therefore

a(ATTY) = cos o(ATT) > oS 0.y 1= 0.
We shall prove the inequality of the theorem by establishing the equality

o(ATF)

Optl = 5 -
V1 +0(AT)%

Let L be a line through the origin in RT*1 other than the vertical line Ly rils
and let the line M be its orthogonal projection onto R*. If L. makes an angle «
with the vertical line L, ,.j, then L makes an angle 7/2 - @ with M. Suppose M
in turn makes an angle B with a line N through the origin in R*¥. Then the angle y
between L and N is automatically determined by the formula

(5.2)

(5.3) cos y = sin @ cos 8,

as may be seen by a trivial geometric argument. If, among all lines in Rr“, L
makes the largest possible angle 0., with the set

{Lij: 0<i,j<rori=r, j=r+1},
then
@ =y=0.1 and B=0(%),
in which case N is parallel to some edge of A*. Inserting these values into formula
(5.3), we get the formula
cos 6.,; = sin 0., cos 6(AT),

or equivalently,

2] r
cos 0., = cos 6(A") ,
V1 + cos? 8 (AT)

which is the same as (5.2) and therefore proves the theorem.

If the edge x,.X,.,; is very short compared with the edges of A", then the edges
of AT+l disregarded in the computation of 0r+1 and or+] have approximately the
same directions as those of AT, which were included in the computation. Similarly,
if the edge xX,.X.4) is very long compared with the edges of AY, then the edges of
ATtl disregarded in the computation all have directions approximately the same as
that of x,.x.,.;, which was included. Thus if x, x4 is either very short or very
long, then 6(A**1) is approximately equal to 641 , and o(AT) is approximately
equal to 0, ; . In such cases the inequality of the theorem is practically an equality,
and therefore the result is best possible.
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Note that when r = 1, the inequality of the theorem is an equality because the
shape of an edge is 1, while the shape of a right triangle is 1/v 2.

Note also that if orthogonal parturition is iterated, beginning at stage one with a
one-simplex, then the k-simplex AK obtained at stage k will have shape
o(A® > 1/VK. The appearance of the number 1/vk in the statement of the Main
Theorem is related to this.

Finally, we observe that if the nondegenerate r-simplex A™ C R™ (n>r) is
given and we wish to add a vertex x,4; to produce an (r + 1)-simplex AY +1 with as
good shape as possible, and if the edge x,.x,4) is either very short or very long
compared with the edges of AT, then orthogonal parturition is approximately the
most efficient way of doing this.

6. ORTHOGONAL FISSION

Here I give a variation on the theme of the preceding section.

As before, let AT be a nondegenerate r-simplex in R® (n > r) with a distin-
guished vertex, and name the vertices xg, X1, *-*, X so that x,. is the distinguished
one. Let U be a small neighborhood of x, in R™, not containing any of the other
vertices of AT. Let x, and x;;; be two distinct points of U such that the edge
X Xp4+1 is orthogonal to the r-plane PT spanned by AY. Then

1 1
X0y X1y "5 Xpaly Xypy Xptd

are the vertices of an (r + 1)-simplex AT™*! in R™, and if U is sufficiently small,
then AT*! is nondegenerate. I call this new procedure orthogonal fission (applied
to the vertex x,.).

Observe the difference between orthogonal fission and orthogonal parturition. In
orthogonal parturition we add one new vertex to AT to produce ATH!; thus AT isa
face of ATT! . In orthogonal fission we 7replace a vertex of AT by fwo new vertices
to produce AT+ ; thus AT is generally not a face of ATHL

If U is chosen sufficiently small, then the simplex ATD obtained from AF by
orthogonal fission can be made arbitrarily close in shape to one obtained from AT
by orthogonal parturition, in which the new vertex x.,; is very close to x,.. Then
by the preceding section we have the following result.

THEOREM 6.1. Given AY with a distinguished vertex x,., and given € > 0,
there exists a © > 0 such that if A™1 is obtained from AT by orthogonal fission
applied to x,., and if X, and x,.,; are both within & of x,., then

r r
old) < o(aTtl <—3(—A—)——+a.

7. ORTHOGONAL FISSION OF A SIMPLEX INSCRIBED IN A
TOPOLOGICAL MANIFOLD IN EUCLIDEAN SPACE

Both orthogonal parturition and orthogonal fission are valid procedures for build-
ing simplexes of good shape from simplexes of smaller dimension sitting alone in
Euclidean space. But when the simplexes must be inscribed in a topological manifold
in Euclidean space, then orthogonal fission succeeds where orthogonal parturition
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fails. To see this, consider one nappe of a cone, with vertex-angle less than 90°.
Let xy be any point on the cone, other than the vertex, and let x; be the vertex.
Then the line segment xpx; in Euclidean space is a one-simplex Al inscribed in
the cone. It is impossible to extend this inscribed one-simplex to an inscribed two-
simplex by applying orthogonal parturition to the point x;, regardless of where xg
may be located. But it is evident that orthogonal fission can be applied successfully
to x; to yield an inscribed two-simplex.

THEOREM 17.1. Let M be a topological k- manifold in R™, and let A* be a non-
degenevate r- simplex inscvibed in M (r <K). For any vertex x,. of A® and any
e > 0, one can apply orthogonal fission to x,. so as to obtain a nondegenerate (r + 1)-
simplex AT inscribed in M, such that

U(Ar) -g < O.(Ar+l) < C(Ar)

V1 + g(AT)? J1+ o(a%)2

Given A", the distinguished vertex x,., and ¢ > 0, first use Theorem 6.1 to find
a 6> 0 such that if orthogonal fission is applied to x, and if both x; and xy+] are
within 6 of x,., then o (ATTD) will satisfy the desired inequality. To prove the theo-
rem, it remains to show that x,. and x,,; can in addition be selected on M.

+ €.

Let X be a small neighborhood of x, in M, lying within the 6-neighborhood of
X, in R™., Consider the orthogonal projection of X onto the r-plane P spanned by
AT in R™. Since r <k, this projection mapping cannot be one-to-one on X. Thus
there exist two points x; and Xx;;; in X that are projected orthogonally onto the
same point of P¥. Since this means that the edge x.x;,; is orthogonal to PT, all
the conditions for orthogonal fission are satisfied, and in addition the resulting AT
is inscribed in M. This proves the theorem.

THEOREM 7.2. Let M be a topological k- manifold in R™, xg a preassigned
point of M, and X a preassigned neighborhood of xq in M. Then for each r <k and
each € > 0, theve exists an r-simplex AT, inscribed in X with one vertex at x,
such that

1 1
Jr ~F <o(Ar)<7—;+s.

Consider only X and disregard the rest of M. Choose a second point x; in X.
Now xx; is a one-simplex inscribed in X. Use Theorem 7.1 and iterate orthogonal
fission (applied to the last vertex) r - 1 times. The validity of the specific inequality
given in the statement of the theorem can either be seen directly, or established by
induction with the aid of the inequality of Theorem 7.1.

Observe that the only feature of M used in the proofs of Theorems 7.1 and 7.2 is
the fact that no open set in M can be mapped in a one-to-one manner into an r-plane,
for r <k. The theorems are therefore valid for any M with this property (for ex-
ample, for any locally compact M having dimension at least k at each point).

8. DISTRIBUTION OF INSCRIBED k-SIMPLEXES OF GOOD SHAPE IN
A TOPOLOGICAL k-MANIFOLD IN EUCLIDEAN SPACE

If M is a topological k-manifold in R™, then Theorem 7.2 guarantees the exist-
ence of a k-simplex of good shape inscribed in any open set X C M, with onre vertex
preassigned. I will need the same sort of guarantee, but with fwo vertices
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preassigned, in order to show that a manifold satisfying the hypothesis of the Main
Theorem has a tangent plane at each point. The orthogonal fission procedure of Sec-
tions 6 and 7 is by itself inadequate for obtaining such a result, because if two ver-
tices are preassigned, fission will destroy one of them while producing an inscribed
triangle. We need an independent guarantee that two preassigned vertices can be ex-
tended to an inscribed triangle of good shape. Orthogonal fission (Theorem 7.1) can
then finish the job, because there will always be at least one extra vertex that can be
split by fission.

THEOREM 8.1. Let M be a topological k-manifold in R™ (k> 2). Let X bea
preassigned connected open subset of M, and let xg and x| be preassigned points of
X such that |xq - x;| < diam X. Then there exists a third point x5 in X such that
the triangle A2 with vertices Xq, X1, and X, is acute, in othey wovds, such that

o(A%) > 1/V32.

The conditions on X, x5, and x; are necessary. If M = X consisted of two dis-
joint two-spheres in R3, and xy and x; were closest points, one on each two-
sphere, then the conclusion of the theorem would be false. It would similarly be
false if M = X were a single two-sphere in R3, and x; and x| were antipodal
points.

Now let M, X, xq, and X1 be given as in the hypotheses. I will construct the set
A of all points x in RP, distinct from xy and x;, such that xgx;x is an acute tri-
angle. To prove the theorem, I will show that X must meet A.

Figure 1

Through the point xg we draw the (n - 1)-dimensional hyperplane in R® ortho-
gonal to the segment xgx, as in the figure. The third vertex x must lie on the
same side of this hyperplane as x, if the triangle xgx1x is to have an acute angle
at xg. Similarly, we draw the (n - 1)-dimensional hyperplane through x; orthogonal
to xpx;. Then x must lie on the same side of this hyperplane as x, if the triangle
Xg X) X is to have an acute angle at x;. Finally, x must lie outside the (n - 1)-
sphere of radius Ixo - X 1|/ 2 with center at (xg+x;)/2 if the triangle xyx;x is to
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have an acute angle at x. The combination of these three restrictions yields the open
set A, as shown in the figure. B denotes the closed ball bounded by the (n - 1)-
sphere, C denotes the closed half-space of the (n - 1)-plane through x, that does not
contain x; , and D denotes the closed half-space of the (n - 1)-plane through x p that
does not contain xg.

To show that X meets A, suppose to the contrary that X N A = ¢. Then
X CBUCUD. X cannot be entirely contained in B, because the diameter of B is
precisely Ixo - X |, while the diameter of X is by hypothesis larger than this. Fur-
thermore, X cannot be entirely contained in C U D, because x¢ cannot be connected
to x; in C U D, whereas it can be connected to x; in X since X is connected.

The assumption that X N A = ¢ therefore implies that X is contained entirely in
B U C UD, partially in B and partially in C U D. But then removal of either x or
x; from X disconnects X, whereas this is patently impossible for a connected open
set in a manifold of dimension at least 2. Thus X must meet A, and the theorem is
proved.

Putting Theorem 8.1 to its intended use, we get the following result.

THEOREM 8.2. Let M be a topological k-manifold in R™, X a connected open
subset of M, and xg and X, two points of X such that lxo - xll < diam X. Then
Jor each integey r <K, there exist points xX,, X3, ***, X, in X such that the r-
simplex A* with vertices xg, X1, Xp, ***, Xy has shape o(A*) > 1/Vr.

The hypotheses are tailored to those of Theorem 8.1. If k = 1, the conclusion is
automatically satisfied. If k > 2, apply Theorem 8.1 to get a third vertex x, in X
such that the triangle A? with vertices x,, x; and x, has shape o(A%)> 1/V2. I
k =2, stop here. If k > 2, we are now in a position to apply orthogonal fission to x,,
and in each successive case to the last vertex. The result now follows if we iterate
this procedure with the help of Theorem 7.1.

Note that Theorem 8.2 improves Theorem 7.2 not only in the sense that we can
now preassign two vertices rather than one, but also in that the resulting r-simplex
AT has shape o(AT) > 1/+vr, rather than 1/VT - .

THEOREM 8.3. Let M be a topological k-manifold in R™. If oy < 1/VK, then
the closure of (M)lgzl in (M)k‘L1 contains the diagonal A.

Use Theorem 8.2, with X an arbitrarily small neighborhood of a given point in
M.

Without Theorem 8.3 it would not be reasonable to talk about the continuous ex-
tendability of the generalized secant map over the diagonal, as was done in the state-
ment of the Main Theorem.

II. CHARACTERIZATION OF DIFFERENTIABLE MANIFOLDS
IN EUCLIDEAN SPACE

9. SOME DEFINITIONS

Let M be any subset of R™, %y a point of M, and P a k-plane in R" through
Xg. Then P is said to be a fangent k-plane to M at X¢ if

Limit ad%——fl) =0,
XEM—XO » 70

X X0
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where d is the ordinary Euclidean distance in R™. Equivalently, P is a tangent k-
plane to M at x if for every € > 0 there exists a 6 > 0 such that if x € M and
0 < d(x, xg) < 6, then the vector x - xy makes an angle less than £ with P.

If M has a tangent (k - 1)-plane at x(, then each k-plane containing it is a tan-
gent k-plane to M at xg. On the other hand, if M has no tangent (k - 1)-plane at
Xg, then it has at most one tangent k-plane at x;.

If P is a k-plane in R™, then P, will denote the parallel k-plane through the
origin. Thus P, will be an element of the Grassmann manifold Gn,k'

Topological manifolds in Euclidean space have already appeared in Sections 7
and 8. A subset M C R™ is said to be a k-dimensional topological or CO-manifold
in R™ if for each x; € M there exist a neighborhood X of x; in M, an open set U
in RK, and a homeomorphism F: U — X.

Suppose, in addition, that F can always be chosen to be a Cl-immersion of U
into R, meaning that F is a map of class C! from U c RK to X € R® whose dif-
ferential d¥ is nonsingular at each point of U. Then M is said to be a k-dimen-
stonal Cl-manifold in R™.

When we parametrize a manifold, it is sometimes useful to allow the domain U
of the parametrization F to be an open set in some k-plane P(x,) in R™, possibly
depending on X, rather than in RK itself. It still makes sense to speak of the dif-
ferentiability of F, and if F is differentiable, then the differential of F at u € U is
a linear map

dF(u): Pylxy) — R™

whose domain is the k-dimensional subspace Py(x) parallel to the k-plane P(xg).
If for each x € M, such an F exists which is of class C! with dF nonsingular at
each point of U, then one can easily show that M also satisfies the strict definition
of Cl-manifold in R™ given above. This permissiveness with the domain of F is
particularly convenient because it allows direct local parametrization of k-dimen-
sional Cl-manifolds in R® by their tangent k-planes.

10. A PRELIMINARY CHARACTERIZATION OF C!-MANIFOLDS IN R™

THEOREM 10.1. Let M be a k-dimensional topological manifold in R®. Then
M is a Cl-manifold in R™ if and only if

(1) M has a tangent k-plane P(x) at each point x € M;
(2) the map M — G, sending x to Py(x), is continuous;

(3) for each x € M, the ovthogonal projection 7. R® — P(x) is one-to-one on
some neighborhood of x in M.

This theorem is in itself a characterization of Cl-manifolds in R™, though not
particularly satisfying, since it revolves around the existence and properties of tan-
gent planes (which seems a little like begging the question). It is in any case a use-
ful tool for the proof of the Main Theorem.

Before the proof begins, observe that properties (1) and (2) alone are not enough
to characterize Cl—manifolds, since they do not prevent M from having cusp-like
folds.
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That the conditions are necessary is easily verified, and we omit this. Suppose
then that M is a topological manifold in R™ satisfying conditions (1), (2), and (3). If
M is a Cl-manifold, then the local parametrizations obtained by inversion of the
orthogonal projections onto tangent planes are automatically Cl-immersions when
restricted to sufficiently small neighborhoods. Our program will be to prove this
directly from conditions (1), (2), and (3).

Let x be a fixed point of M, and using (1), let P(x() be the tangent k-plane to
M at xy. According to (3), the orthogonal projection

LI R" — P(xg)
is one-to-one on some neighborhood Xy of xg in M. Let U = ﬂXO(Xo) C P(xg).
Then

’ITXO: Xo— U

is a homeomorphism; so let

be its inverse. To prove the theorem, I will show that F; is a Cl-immersion on
some neighborhood of x; in U C P(xp); note that it need not be a Cl-immersion on
all of U. The special feature of the parametrization ¥y to keep in mind is that if
u € U, then Fy(u) - u is orthogonal to P(xg).

Properties (1) and (3) have already been used in the construction of Fy. Next I
show that property (1) implies that Fg is differentiable at xg € U, by showing that
F, is tangent at x; to the inclusion map

Iy: P(x5) C R,
equivalently, that

| Fofw) - o] _

Limit =
ue U-x 1“ - XOl
u— XO

Since I is certainly differentiable at xg, the map Fy will be, too.
Since Ip(u) =u and Fy(u) - u is orthogonal to P(xgp), the fraction
| Fow) - To(w)| | Fo(u) - u|

Iu’xo| B |u'xo|

is the tangent of the angle between the vector
Fo(u) - x5 = x - X

and the k-plane P(xg). Since P(xq) is a tangent k-plane to M at xg, the tangent of
this angle goes to zero as x = Fy{u) — xq, or equivalently, as u — xy. Thus Fy is
differentiable at xq, and furthermore, dFy(xq) = dl(xg), which is the inclusion
Py(xg) € R™. Thus dF(xo) is nonsingular.

Since x; was arbitrary in M, it now follows that all the local parametrizations
by tangent k-planes are differentiable at the distinguished points of contact, and have
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nonsingular differentials there. Using this, together with property (2), I can now
show that Fg is a differentiable immersion on some neighborhood of xg in U.

Consider the following diagram.

P(xg)

Figure 2

We already have the parametrization Fg: U — Xy C M. Using property (2), we
make U smaller, if necessary, so that for each u; € U the tangent k-plane P(x;) to
M at x; = Fg(u;) makes an angle less than 7/2 with P(xq). The orthogonal projec-
tion LA R™ — P(x,) has a local inverse

F:V > X, CM,
and we know that ¥, will be differentiable at x;, with dF(x;) the inclusion
Po(x l) CR™.
Since P(x;) makes an angle less than 7/2 with P(xg), the orthogonal projection
TTXO: P(Xl) - P(XO)
is an affine homeomorphism with inverse

G: P(xg) — P(x;).

Since G is also an affine homeomorphism, it is differentiable at every point of
P(xg), and dG(u) is a fixed linear isomorphism of Pg(xg) — Po(x;) (the linear part
of G) for all u € P(x).

Since u; is an arbitrary point of U, I shall show that F; is a differentiable im-
mersion on U by showing that Fg is differentiable at u; and that dFg(u;) = dG(u,).
This can be done by showing that F( is tangent to the composition ¥; G at uj, for
we already know that G is differentiable at u; and that ¥ is differentiable at x,
so that F| G is differentiable at u;, with

d(F;G)(u;) = dF(x;)dG(u;) = dG(u; ).
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Actually, it will be more convenient to show that Fj 1 F, G is tangent to the inclusion
IO: P(XO) Cc R™ at up.

I must show that
| F5! ¥ G(u¥) - To(u¥)|

luk - uy |

(10.2) Limit

u*—> ul

According to the notation of Figure 2, G(u*) = v, F;(v) = x, and Fg(u) = x. Thus
F3! F) G(u*) = u. Furthermore, Io(u*) = u*, and therefore (10.2) can be written

lu-w|

Limit 0.

uw¥—u; |11* - ul] )

Notice that u = Teo (x) and u* = ﬂxO(V). Since o is an orthogonal projection, it is

norm-decreasing, and therefore
u-w < x-v].

Next, since G is affine, it satisfies a Lipschitz condition for some Lipschitz con-
stant r. Since G(u*) =v and G(u;) = x,

lv - x| <rluk-ul.
Thus

w-wr] _x-v]

lux - uy| = 7 v - x|

As u* — u; (or equivalently, as v — x;, or as x — x,), the quotient
|x - vl
T
v - x]

which is the tangent of the angle between the vector x - x; and the k-plane P(x;)
tangent to M at x|, must also approach zero. Thus the limit appearing in (10.2) is
zero, hence F is indeed a differentiable immersion on U.

To complete the proof of the theorem, I must show that Fj is of class cl on U,
in other words, that the (nonsingular) linear transformation
dFo(u): Py(x,) — R”
varies continuously with u € U. This is equivalent to showing that the vector

dFo(u)(u') € R™

is jointly continuous in u € U and u' € Py(xg).

If x = Fy(u), then the vector dFg(u)(u') is the unique point lying in the intersec-
tion of the k-dimensional subspace Pg(x) with the (n - k)-plane through u' and
orthogonal to Py(xq). Now x = Fy(u) varies continuously with u, and Py(x) varies
continuously with x. Thus Py(x) varies continuously with u. The (n - k)-plane
through u' and orthogonal to Py(xy) varies continuously with u'. It then follows
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from the explicit formulas of Cramer’s Rule that the intersection dFy(u)(u') of
these two planes varies continuously with u and u'.

There is a slight catch in the above argument. In order to rely on Cramer’s
Rule, we must understand the continuous variability of a (linear or affine) subspace
in terms of the continuous variability of an appropriate set of linear equations for it.
This is all right for the (n - k)-plane through u' orthogonal to Py(x,). But the con-
tinuous variability of Po(x) is understood in terms of angles, not equations. It is a
trivial geometric argument to show that as the equations for a k-dimensional sub-
space vary continuously, so does the subspace in terms of angles. Indeed, this is
how one might locally parametrize the Grassmann manifold G, ). But a one-to-one
continuous parametrization of a manifold by an open subset of the same-dimensional
Euclidean space is automatically a homeomorphism into. Thus, as a k-dimensional
subspace of R™ varies continuously, it may also be assigned continuously varying
linear equations (locally). This completes the argument, and with it the proof of
Theorem 10.1.

11. PROOF OF THE MAIN THEOREM

I now prove the Main Theorem stated in Section 1.

Necessity. This will be proved without any upper bound on o g; if 0 is too
large, then (M)gzl is empty, and a map from the empty set can be continuously ex-

tended (in miany ways) over A.

Let M be a k-dimensional C!-manifold in R™, and consider the generalized
secant map

2 (M)lo-qgl — Gn,k‘

Extend T over the diagonal A of (M)X*! by defining Z(x, x, -+, x) to be P(x), the
k-dimensional subspace of R™ parallel to the tangent k-plane to M at x. The map
2, was already continuous on Myt pd 0 , which is open in (M)lff(')l U A, and the extended

Z is continuous on A alone because P(x) varies continuously with x (Theorem
10.1).

Let x be a point of M, and let 0 <& <7/2. According to Theorem 4.4, there
exists a 0 > 0 such that 1f A¥ is a k- simplex with shape o(A K> og, each of whose
edges makes an angle at most & with Py(x), then the k-plane spanned by AK makes
an angle less than ¢ with Pg(x). Let X be a neighborhood of x in M such that if y
and z are distinct points of X, then the line through y and z makes an angle at most
6 with Py(x) (mean-value theorem) If (xg, X1, ***, XK) € (M)k‘Ll and each x; lies

in the neighborhood X, then Z(x(, x;, **-, X}) makes an angle less than ¢ with
Z(x, %, *-*, X} = Py(x). Hence the extended Z is indeed continuous.

Sufficiency. Now let M be a k-dimensional topological manifold in R™ such that
the generalized secant map

Z (! Ga (0< 00 < 1/VE)

admits a continuous extension over (M)kJrl U A. To show that M is a Cl—manifold,

I will show that M satisfies conditions (1), (2), and (3) of Theorem 10.1, and then in-
voke that theorem.
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For each x € M, let P(x) be the k-plane in R"™ through x and parallel to
Z(x, x, **-, x). To show that M satisfies condition (1), I must show that P(x) is a
tangent k-plane to M at x. Let X be a connected open neighborhood of x in M
such that if (xq, %1, **, X3) € (M)I(?E)1 with each x; in X, then Z(xg, X1, ***, XK)

makes an angle less than ¢ with 2(x, %, ***, x), and hence with P(x), where ¢ > 0 is
some preassigned real number. I now claim that if y is any point of X such that

Iy - x| < diam X then the line through x and y makes an angle less than ¢ with
P(x). Choose any such y. Let xo =x and x; =y. According to Theorem 8.2, there
exist points x,, X3, *--, X3 in X such that the k-simplex with vertices

Xo, X1, Xz, ***, X has shape greater than 1/Vk. Since 0y < 1/VE,

(%, X1, ***, X ) € (M)Iggl . By the initial choice of X, Z(xq, x;, *'*, X)) makes an

angle less than ¢ with P(x). A fortiori, the line through Xy =X and x,; =y makes
an angle less than ¢ with P(x), which therefore satisfies the definition of a tangent
k-plane to M at x. This verifies condition (1).

Condition (2), that Py(x) = Z(x, x, -*-, X) varies continuously with x, follows be-
cause 2 is already continuous on (M)lézl U A, a fortiori on A alone.

To verify condition (3), let X be a connected open neighborhood of x in M such
that if (x5, %y, **, X)) € (M)lgt)l with each x; in X, then Z(xq, X1, ***, Xx) makes

an angle less than 7/2 with Z(x, x, *:-, x), and hence with P(x). Let X'C X be a
neighborhood of x in M such that diam X' < diam X. Let xy and x; be any two
distinct points of X'. Since |xq - x1| < diam X' < diam X, Theorem 8.2 guarantees
the existence of points x,, x3, -*+, X3 in X such that (xg, x;, =+, Xy ) € (M)Igzl .

By choice of X, Z(xqg, X1, ***, X)) makes an angle less than 7/2 with Z(x, x, -+, x),
and hence with P(x). In particular, the line through x, and X) makes an angle less
than 7/2 with P(x). The orthogonal projection 7 R — P(x) is one-to-one on X!,
hence condition (3) is also satisfied.

Now, by Theorem 10.1, M must be a Cl-manifold in R®, and the proof of the
Main Theorem is complete.
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