ALMOST COMBINATORIAL MANIFOLDS
AND THE ANNULUS CONJECTURE

C. Lacher

Dedicated to Professor Raymond L. Wilder on his seventieth birthday.

In this paper we investigate a class of conjectures related to the conjectures
B(n, m, k) in [5]. We prove (Corollary 3.5) that each member of a fairly large class
of these conjectures is equivalent to the annulus conjecture. This equivalence leads
to an example of a set in R? that could conceivably be wild, in which case the 4-
dimensional annulus conjecture would be false. As a by-product of Section 3, some
positive results are obtained; for example, in S8, the union of a tame 6-cell D 1 and
a tame 4-cell D, meeting in a 2-cell D is tame, provided D is locally flat in both
Bd D; and Bd D,.

In the first two sections we establish some resulis needed for the main “equiva-
lence” theorems (Theorems 3.2 and 3.3). However, the results in these first sections
are proved in greater generality than is needed later, and they are of independent
interest.

Definitions. An n-manifold N is said to be an almost-combinatorial n-manifold
(abbreviated AC n-manifold) provided that both Bd N and Int N support locally finite
combinatorial structures; in this case, N will be assumed to be already equipped with
such structures. The most notorious examples of almost-combinatorial manifolds
are the fake annuli; a fake n-annulus is a manifold that is homeomorphic to the clo-
sure of a region in S™ bounded by a nonintersecting pair of locally flat (n - 1)-
spheres in S™. If one can triangulate a given fake annulus A, then it follows that A
is homeomorphic to S?-1 x [0, 1]. Thus, if one could triangulate every fake n-
annulus, the annulus conjecture would be settled affirmatively in dimension n.

As usual, an isotfopy of a space X is a collection hy (0 <t < 1) of homeomor-
phisms of X onto itself such that the map H: X X I — X defined by H(x, t) = hi(x) is
continuous. If f, g: X — Y are embeddings and B C Y, then f and g are ambient
isotopic leaving B fixed if there exists an isotopy hy (0 <t < 1) of Y such that hg
is the identity, ht| B is the identity for each t, and h;f = g.

Our definition of locally tame is the same as that used by Gluck in [9]. The con-
cepts of locally flat embedding and submanifold are well known.

1. EMBEDDINGS INTO ALMOST-COMBINATORIAL MANIFOLDS

In the following, I denotes the unit interval [0, 1], and B stands for the set
{0, 1}. I X is a space and F is an embedding of X X I into the manifold N such
that F(X X B) € Bd N, we say that F agrees with a collay structure for BA N in a
neighbovhood of X X B provided there exists a collaring G: Bd N X [0, 1/2) — N (that
is, an embedding such that G(x, 0) = x for x € Bd N) and an € > 0 such that
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G(f(x, 0), t) = f(x,t) and G(f(x, 1), t) = f(x, 1 - t)

for 0<t<e.

THEOREM 1.1. Let N be an AC n-manifold, and let K be a (finite) k-complex
(n > 2k +4). Suppose that f: KX B — Bd N is a locally tame embedding such that
f | KXO0 and £ | K X 1 are homotopic as maps of K into N. Then f can be extended
to an embedding F: KX 1 — N such that F | K X% (0, 1) is a piecewise linear embed-
ding of K X (0, 1) into Int N. F may be taken to agree with a collay structure for
Bd N in a neighborhood of K X B.

Before proving this existence theorem, we state the corresponding uniqueness
theorem and a corollary.

THEOREM 1.2. Let N be an AC n-manifold, and let X be a (finite) k-complex
(n> 2k +4). Suppose that f, g: KX 1 — N are embeddings such that
f|[KXxB=g|KxXB maps Kx B into Bd N and such that £| K x (0, 1) and
g | K % (0, 1) are locally tame embeddings of XX (0, 1) into Int N. If f and g ave
homotopic through maps ¢ K X1 —N (0 <t < 1) such that

¢t | KXB =f|KxB and ¢(Kx(0, 1)) C N - £f(K X B)

Jor each t, then £ and g ave ambient isotopic leaving Bd N fixed.

COROLLARY 1.3. Let A be a fake n-annulus, and K a k-complex (n > 2k + 4),
and let f: KX B — Bd A be a locally tame embedding. Then f has an extension
F: KXI— A such that F I K % (0, 1) is a locally tame embedding of K X (0, 1) into
Int A; any two such extensions of f arve ambient isotopic leaving Bd A fixed; move-
over, each of the extensions agvees with a collar stvucture for Bd A in a neighbor-
hood of K X B.

The corollary follows immediately from the theorems, since A has the homo-
topy type of sn-1,

Proof of Theorem 1.1. First we extend f to an embedding
g: Kx[0,1/3JUKx%x[2/3, 1] - N

by making g agree with a collar for Bd N. Thus g| (K x (0, 1/3] UK x[2/83, 1)) isa
locally tame embedding of K x (0, 1/3] U K X [2/3, 1) into Int N. By Theorem 9.1 of
[9], there is a homeomorphism h of N onto itself such that h | Bd N is the identity
and hg | K x (0, 1/3] U K x [2/3, 1) is piecewise linear.

Let g =hg |K x {1/3, 2/3}. By the hypothesis that £ |Kx 0 and f|K X 1 are
homotopic, it is easy to construct an extension G: K X [1/3, 2/3] — Int N of g such
that G is piecewise linear on K X [1/3, 2/3]. Letting G =G on K x [1/3, 2/3] and
G =hg on Kx [0, 1/3] U K% [2/3, 1], we see that G is an extension of f that is an
embedding on K % [0, 1/3] UK X [2/3, 1] and a piecewise linear map of K X (0, 1)
into Int N. Since n > 2(k + 1) + 2, a general position argument completes the proof.

Proof of Theorvem 1.2, Let C be a collar for Bd N in N; we identify C with
Bd N % [0, 1/2), where (x, 0) = x is a point of Bd N (see [2]).

For each t € [0, 1/2], let X; =K x [0, t]UKx[1 -, 1]. Thus X;,, =K %[0, 1]
and Xg5=K X {0, 1} =K X B. By Theorem 3.1 of [12], we may assume that
£|Xy/3=g|Xyy3, that

f(x, t) = (f(x, 0), t) = g(x, t) = (g(x, 0),t) € C for 0 <t < 1/3,
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and that
f(x, t) = (f(x, 1), 1 -t) = g(x, t) = (g(x, 1), 1 -t) e C for 2/3 <t < 1.

We use the collar C to construct a homotopy y4: KXI — N (0 <t<1) between {
and g such that

Y | X176 = £]X176 and (KX (0,1)) C IntN for 0<t<1.

(See the next paragraph for a construction of .) Then we let Ny be a compact
combinatorial submanifold of Int N that contains the image of K X [1/6, 5/6] under
the homotopy ¥. By Theorem 9.1 or [9], it may be assumed that f | K X (0, 1) and

g | K x (0, 1) are piecewise linear, so that £-1(Ny) and g-1(N,) are not only the
same set, but this set is a subpolyhedron P of K X I. Applying Theorem 3.1 of [12],
we see that the embeddings f| P and g | P are ambient isotopic leaving N - Ng
fixed. Since f and g agree on K X I -~ P, this completes the proof, except for the
construction of the homotopy y.

Let p: N — Int N be a map such that p l N - C is the identity and
p(x, 0) =(x, 1/6) for x € Bd N. Define y; on K X1 by

i(x, s) (0<s<1/6),
Yi(x, s) = { pde(x, 3s/2 - 1/4) (1/6 < s <5/6),
f(x, s) (5/6 <s<1).

It is easily verified that ¥ meets the above requirements.

2. WEAK ISOTOPIES

In Section 3 we need an assumption about the extendability of certain homeomor-
phisms. The most convenient method of stating the assumption involves the concept
of a weak isotopy, given by the following definition.

Definition. I X is a space, a weak isotopy of X is a homeomorphism
H: X XI~ XXI suchthat HX X 0)=XX0 and HX X 1)=Xx 1. If H is a weak
isotopy of X, we let Hy and H; denote the homeomorphisms of X defined by
H(x, i) = (Hi(x), i) (i=0, 1), and we say that Hg and Hj are weakly isotopic. There
is a similar concept of weakly ambient isotopic embeddings.

Crowell [7] showed that an isotopy h¢ (0 <t < 1) on a locally compact Hausdorff
space X defines a weak isotopy H, by setting H(x, t) = (hy(x), t) (x € X, 0 <t < 1).
Thus, in the case of manifolds, weak isotopy is a weaker concept than isotopy.

Digressing slightly, we point out that Theorem 1.2 above can be used, along with
the proof of Theorem 4.1 of [8], to prove the following corollary.

COROLLARY 2.1. Let N be a (k + 1)-connected combinatovial n-manifold, and
let X be a tame, finite k-polyhedron in Int N (n > 2k + 3). Suppose that £ and g
ave homeomovrphisms of N onto itself and that £ and g ave the identity on X, If £
and g ave weakly isotopic, then theve is a weak isotopy H: N X I ~ N X 1 such that
Ho=1f, H1=g, and H| X X1 is the identity. In particular, f|N - X and g|N - X
ave weakly isotopic as homeomorphisms of N - X,
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Corollary 2.1 can be used, for example, to prove the following statement. Lef
AY, AR, and AK be simplexes such that Np € A1, A is a face of Ay and of 1y, and
Ny -ACInt ;. Let h be a homeomovphism of Bd A, onto itself that is the iden-
tity on A and is (weakly) isotopic to the identity on Bd Ay . If n > 2k + 4, then h
can be extended to a homeomorphism H: Ay =~ Ay such that H | Ap = identity.

The following lemma states the relationship between weak isotopy and extension
of homeomorphisms that we will need.

LEMMA 2.2. Let S be a sphere that bounds a locally flat cell D in the interior
of the topological manifold N. Lelt h be a homeomorphism of S onto itself that is
weakly isotopic to the identity on S, and let U be a neighbovhood of D in N. Then h
can be extended to a homeomorphism g of N such that g(D) =D and
g | (N - U) = identity.

Since D is contained in an open n-cell, it suffices to prove the lemma under the
assumption that N = R™®. The proof is elementary; it makes extensive use of the
“extension by radial projection” method of extending to the interior a homeomor-
phism on the boundary of a cell.

3. UNIONS OF FLAT CELLS

The remainder of this paper is devoted to relationships among the o, 8, and o-
conjectures (stated below), and it may be considered a generalization of [5].

Definition. Let D; and D, be cells in S such that D; N Dz = Bd D; N Bd D
is a cell. D; and D, are simuliancously flat in S™ if there exists a homeomor-
phism h of S™ such that h(D;) is a simplex and h(D; N Dz) is a face of h(D;)
i=1, 2).

For appropriate integers n, m;, m,, and k, let B(n, m;, m,, k) and o(n, k)
denote the following conjectures.

B(n, m;, my, k). If D; and D, are locally flat cells in S™, of dimension m,
and m; , respectively, and if Dy N Dy = Bd D} N Bd D, is a k-cell that is locally
flat in Bd Dy and in Bd D, , then Dy and D, ave simultaneously flat in S™ .

o(n, k). Let f: Bk — 80 pe a locally flat embedding. Then theve exists a weak
isotopy H of S® such that H, is the identity and H,; | B¥ = 1.

In B(n, m;, m,, k) we always assume that n > m; > m, > k > -1. The above
statement of o(n, k) is used whenever n > k; conjecture o(n, n) is the usual weak
isotopy conjecture in dimension n. We note that the annulus conjecture in dimension
n, denoted by o(n), is the same as conjecture B(n, n, n, - 1).

The following is a corollary to Corollary 3.2 of [12].
COROLLARY 3.1. B(n, m;, my, k) is frue whenever n> 2m, + 2.
THEOREM 3.2. S8(n, m;, m,, k) = 8(n, m;, m,, -1) whenever n> 2k + 4.

Proof. Let D; and D, be locally flat cells in S?, of dimension m; and mj,
respectively, such that D; N D, = ¢. Without loss of generality we may assume that
D, is a simplex.

We construct a (k + 1)-cell E that “spans” D; and D, as follows. Let E; be a
k-cell that is locally flat in Bd D, and let E; be a k-face of D, . Construct non-
intersecting n-cells Q1 and Q2 in S™ such that Bd Q; is locally flat in S,

D; € Q;, and Bd D; is locally flat in Bd Q; (i =1, 2). It follows from Corollary 1.3
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that there exists a (k+ 1)-cell E in S™ such that E is locally flat in S",
END;=E;CBdE (i=1, 2), and Bd E; is locally flat in BA E (i =1, 2).

Now, by Corollary 3.1, some homeomorphism of S" takes D; and E onto sim-
plexes and takes E; onto a common face. Thus it is clear that there exists an m;-
cell D in S™ such that D is locally flat in S*, D; CInt D, D - Int D is an annulus,
E, is locally flat in Bd D, and D N D, = E,. By the assumption that
B(n, m;, m,, k) is true, there exists a homeomorphism h: 8% ~ S™ such that h(D)

1. (Note that m; > m,.) But then h(D;) is a cell
with locally flat boundary in g™l , and h(Bd D) and h(Bd D;) bound an annulus in

m
and h(D;) are simplexes in S

m
s . Hence h(D;) can be moved onto a simplex in S 1 by a homeomorphism

m
g: S™ = S™ that is the identity on S 1 _Int D. The composition gh then moves both
D; and D, onto simplexes; this completes the proof.

THEOREM 3.3. [B(n, m;, m,, -1), 6(m; - 1, k), o(m; - 1, k)] = B(n, m;, m;, k)
whenever n > 2k + 4,

Proof. Let D1, D, be a pair of locally flat cells in S” (dim D; =m3,
dim D, = m;) such that D; N D, = Bd D; N Bd D, = D is a k-cell that is locally flat

both in Bd D; and Bd Dz. We may assume that D2 is an m2-simplex in sz and
that D is a face of D, . In order to straighten D; and D, simultaneously, we first
construct an m,-cell D, in Int D,, so that 8(n, m;, m,, -1) may be applied.

I 132 denotes the barycenter of D2, let Dy be the simplex whose vertices are
the midpoints of the segments joining 152 with the vertices of D2, and let E be the
k-face of Do determined by D in this way. Construct the embedding F: D X I — D
by requiring that F(x, 0) = x, that F(x, 1) be the midpoint of the segment joining x
with D,, and that F be linear on each interval x X I.(x € D). Thus F(D X 0) = D
and F(DX 1) = E,

Suppose that h is a homeomorphism of S™ such that
(1) h(Dg) = Dg (Dg is a simplex),

(2) h(D,) is a simplex, A
(3) h|D U E is the identity,

(4) (Do UD;)N FDXI) =D UE,

(5) D is a face of h(D,),

(6) E is a face of h(Dy).

We shall complete the proof, assuming that h exists, and then return to the con-
struction of h.

Since F(D x (0, 1)) U hF(D X (0, 1)) lies in the complement of h(Dg) U h(D}), it
follows from Corollary 1.3 that we may strengthen condition (3) on h by the condition

(7) h| F(D X 1) is the identity.

Let p be a mapping of S™ onto itself such that
(8) p(Do) =Dy,
(9) p|D; U h(D)) is the identity,

(10) the nondegenerate inverse sets under p are precisely the sets F(x X I)
(x € D).
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Define g = php~1. It follows easily from conditions (1) to (10) that g is a homeo-
morphism of S™ that maps D; onto h(D;) and D, onto itself. Thus the proof is
complete, except for the construction of h. Notice that the 8- and o -conjectures in
the hypothesis of the theorem have yet to be used.

Under the assumption that B(n, m;, m, , - 1) is true, there exists a homeomor-
phism h; of S™ such that h;(Dg) and h;j(D;) are simplexes. By making use of
Theorem 7.1 of [3, Part I], we may assume that h;(Dg) = Do, that h;(D;) meets
F(D %X I) only in D, and that D is a face of h(D;); the theorem cited in {3] can be
applied, since any two simplexes of the same dimension in S™ are stably equivalent.
The o-hypothesis can now be used to unknot h;(D) and h;(E) in h{(Bd D;) and
h;(Bd Dy), respectively.

Notice that both D and h;(D) are locally flat k-cells in h;(Bd D;). hj;(D) is lo-
cally flat by hypothesis, and D is a face of h;(D;). It follows from o{(m; - 1, k)
that there exists a weak isotopy G of h;(Bd D;) such that Gg is the identity and
G, | D =h, [ D. Hence, by Lemma 2.2, we can extend GIl to a homeomorphism h2
of S™ such that hph (D) = hy (D), hy | hi(Dg) is the identity, and hph; | D is the
identity. (The case k =m; - 1 is slightly more complicated; however, this case may
be ignored, by Corollary 3.1.) A similar argument involving o(m, - 1, k) shows the
existence of a homeomorphism hsz of 8™ such that h3h (Do) = hy(Dg), h3 | h(D;) is
the identity, and h3h; I E is the identity. Let h =hshzh;. A perusal of the last two
paragraphs shows that h satisfies conditions (1) to (6), and the proof is complete.

COROLLARY 3.4. B(n, m;, mp, k) <> B(n, m;, m, -1) whenever n> 2k + 4
and my > 3k/2 + 3.

Proof. o(m, k) is true whenever m > 3k/2 + 2, by Theorem 1' of [6].
COROLLARY 3.5. S(n, n, n, k) <> a(n) whenever n > 2k + 4.

COROLLARY 3.6. B(n, m;, m,, k) is true whenever n> 3m,/2 + 3/2 and

Proof. The conditions imply that n > 2k + 4; therefore, by Corollary 3.4, it suf-
fices to prove B(n, mj;, mz, -1) for n> 3m,/2 + 3/2. But this follows from [13]
and Theorem 7.1 of [3, Part IJ.

Remarks. 1. Corollary 3.5 is a generalization of the main result of [10] and
[11], since B(n, n, n, 0) is easily seen to be equivalent to the slab conjecture in di-
mension n, n > 4.

2. Although Corollary 3.6 is not very esthetic, it does give some previously un-
known facts. For example, f(20, m, 12, 6) is true for 12 < m < 20.

3. Since o{(m, k) is true for m < 3, one can use Theorem 3.3 to prove a few
other low-dimensional cases. For example, 3(8, 4, 4, 2) and B(8, 6, 4, 2) follow, but
B(8, 5, 4, 2) remains undecided.

It is well known that 8(n, n - 1, n - 1, -1) implies a@(n). Hence, by Corollary
3.5, 8(n,n-1,n -1, -1) implies B(n, n, n, k) for n > 2k + 4. The proof of this last
assertion can be modified to show the following version of the “flat spot” theorem.

THEOREM 3.7. Let D, and Dy satisfy the hypothesis in B(n, n, n, k)
(n> 2k + 4). Suppose furthev that theve exist (n - 1)-cells E| and E2, with
E; c BdD; (i =1, 2) such that E1 and E, ave simullaneously flat in S™. Then D,
and Dy are simultaneously flat in S™.
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Proof. Let A} and A, be n-simplexes in S" that meet in a k-face, and let P
and X denote the closures of S™ - A, - A, and S™ - D| - D,, respectively. The
theorem follows if we show that X = P.

Let S; =Bd D; (i=1, 2). By the flat-spot hypothesis, there exists a locally flat
(n - 1)-sphere Sy C Int D; such that S5 US; and Sy U S, bound annuli A; and A,
in S™. The annulus A, can be spanned by a (k + 1)-cell E X I, where

EXINSy =Ex0 and EXINS; =Ex1=8;N8§,.

Shrinking the arcs x X I (x € E) to points, we pull Sy onto a locally flat (n - 1)-
sphere S3 in S™ such that S3 N S; =S3 NS, =8 N S,. Moreover, by Corollary
1.3, S3 US; and S3 U S, bound sets P; and P, each of which is homeomorphic to
P. Thus P, =P; UX and P} N X =8;. Since clearly P; U X = X, we see that

X = P, = P, and the proof is complete.

Theorem 3.7 can be used to reduce the annulus conjecture fo a local problem as
follows.

THEOREM 3.8. Let Dy and D, satisfy the hypothesis of B(n, n, n, k)
(n>2k+4, k>0). If D; UD, is locally tame at some point of D; N D, , then D,
and D, are simultaneously flat in S™.

Proof. Clearly, local tameness at a point of D; N D, implies that there exist
(n - 1)-cells E; € Bd D; (i =1, 2) that are simultaneously flat.

4. AN EXAMPLE

One might hope to use Corollary 3.5 to find a counterexample to a(n), if one
exists. The example described below is not obviously tame; however, there is rea-
son to believe that it is tame.

To begin, select a disjoint pair Q i, Q, of 3-cells in R3 and an arc A in R3
such that A N Q; is an endpoint of A (i =1, 2). Then construct 4-cells D; and D,
in R% , depending on Q; , Q,, and A, as follows.

Let f be the quotient map of R3 onto R3/A; the only nondegenerate inverse set
under f is A. Thus f(Q;) and f(Q,) are 3-cells. By a result of Andrews and Curtis
[1], (R3/A) x R! is homeomorphic to R%. It is not difficult to see that the arc
f(A) X I is cellular in R4, so that there exists a mapping g of R* onto itself whose
only nondegenerate inverse set is f(A) X I. Let E;=g(f(Q;) XI) (i=1, 2). Then E;
and E, are 4-cells in R4 having only the point p = g(f(A) X I) in common. Finally,
form D; by pulling E; into p U Int E; along a collar that is pinched at p.

LEMMA 4.1. If D; and D, ave as constructed above, then Dy and D, are 4-
cells with locally flat boundavies in R* and D; N D, is a point.

Proof., Clearly Bd D; and Bd D, are locally flat except possibly at the point
p=D; N D,. Butthen D; and D, are flat by [4].

LEMMA 4.2. If theve exist a disjoint pair Q,, Q2 of 3-cells in R3 and an arc
A spanning Q) and Q; in R3 such that D} U Dy is wild in R% at the point of intev-
section, then «(4) is false.

Proof. According to Corollary 3.5, «(4) is false if and only if B(4, 4, 4, 0) is
false.

Rewmark. One can probably use Theorem 3.7 to show that D1 U D3 is tame for
any Q 1> Qz, A,
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