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1. INTRODUCTION

Examples have been described by Fox and Artin [12] of wild 2-spheres in a 3-
sphere S- that are locally tame except at a finite number of points. Harrold and
Moise [14] have shown that at each of its points such a 2-sphere S must be locally
tame from at least one of its complementary domains. Furthermore, if S has at
most one point where it is wild from the component U of S3 - S, then U is an open
3-cell [10, Theorem 1], [19, Corollary 2.4]. Sikkema [20] has studied a duality be-
tween spheres and arcs in E3 that are locally tame except at one point. In this
paper, we present some conditions which imply that a 2-sphere in S3 has at most
two wild points.

In Section 4, we use Theorem 1 to investigate the following question raised by
Bing in [6]: Is a 2-sphere S in S3 tame if it can be pierced along each arc in it by a
tame disk? We do not answer this question, but we obtain an affirmative answer
(Theorem 5) with the additional hypothesis that each component of S3 - S be an open
3-cell.

Hempel [15] has raised the following question: Is a 2-sphere S tame in S3 if,
for each ¢ > 0 and each component U of S3 - S, there exists a map of S into U that
moves no point more than a distance £¢? He recently obtained an affirmative answer
under an additional hypothesis [16]. In Section 4 we impose the alternative additional
hypothesis that S can be pierced with a disk on each tame arc on S, and we observe
(Theorem 6 and Corollary 3) that with this alternative additional hypothesis an af-
firmative answer follows from a combination of the Sphere Theorem [18], Theorem
4, and one of Hempel’s recent results [16, Corollary 2].

In Section 5, we indicate how some of these results for a 2-sphere in S3 can be
adapted to a 2-manifold in a 3-manifold.

2. DEFINITIONS AND NOTATION
Let S be a 2-sphere in S3, and let U be a component of S3 - S. We define S to
be locally tame from U at the point p € S if there exist a 3-cell K and a disk D
such that
KNS =D, pe IntD, DcCBAK, K-DCU.
The sphere S is defined to be fame from U if S is locally tame from U at each

point of S. This is equivalent to requiring that S U U be a 3-manifold with boundary,
and to requiring that S U U be a 3-cell [1], [8], [17]. Furthermore, S is fame if it
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is tame from each component of s3-s. I S is not locally tame from U at the point
p of S, then S is said to be wild from U at p.
We say that a subset X of S can be collared from U if there exists a homeo-
morphism h of X X [0, 1] into X U U such that, for each x € X,
h(xx0) = x and h(xxt)cU for 0 <t<1.

Thus S is locally tame from U at a point p € S if there exists an open set V such
that p € V and V N S can be collared from U [8]. We say that S can be locally
periphevally collared from U at a point p € S if for each € > 0 there exists a disk
D such that

peIntDCS,
Diam D <eg, and
Bd D can be collared from U.

We say that S can be locally peviphevally collaved from U if it can be locally pe-
ripherally collared from U at each point, and S can be locally pevipherally col-
larved if it can be locally peripherally collared from each component of S3 - 8. Ifan
arc K in S can be collared from each component of S3 - S, we say that S can be
pievced on K with a disk. As in [9], we say that S can be locally spanned from U at
a point p € S if for each € > 0 there exist disks D and R such that

pelntDCS,
BdD = BdR,
Int R € U, and
Diam(DUR) < ¢.
Various other definitions used here can be found in some of the references, par-

ticularly in [1], [2], [4], and [9].

If K is a set in a metric space and € > 0, then N(K, €) denotes the set of all
points within a distance ¢ of K. If a and b are two points, then ab denotes an arc
whose end points are a and b.

3. SPHERES THAT CAN BE LOCALLY PERIPHERALLY COLLARED

We present in this section some conditions which imply that a 2-sphere S in S3
is locally tame, except possibly at one point, from the component U of S3 - S. The
converses of both Theorems 1 and 2 readily follow from known results cited in

Section 1.
THEOREM 1. If
(i) S is a 2- sphere in S3,
(ii) the component U of S3 - S is an open 3-cell, and

(iii) S can be locally peripherally collaved from U,
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then theve exists a point p such that S is locally tame from U at each point of
S - p.

Proof. Let p; and p, be any two points of S. Our main task will be to show
that S can be locally spanned from U at one of these two points. This will imply
that there exists a point p such that S can be locally spanned from U at each point
of S - p. Then it will follow from [9, Theorem 10] that S is locally tame from U at
each point of S - p.

Let € and 6 be positive numbers such that
(1) 76 < €.

From the hypothesis that S can be locally peripherally collared from U, it follows
that there exist two disjoint disks D; and D, and two disjoint annuli A; and A2
such that for each i (i=1, 2)

pj € Int Di - S:
AiﬂS=BdDichAi,
Ai - Bd Di C U, and
(2) Diam (D; U A;) < 6.

Furthermore, by using Bing’s Approximation Theorem [2, Theorem 7], [7, Theorem
1.1], we may assume that each A; is locally polyhedral at each point of A; N U. We
let J; denote Bd Aj - Bd D; and let a; denote a point of J;. There exists an arc
aja, such that

aya; —(al Ua.z) Cc U - (Al UAz).

From the hypothesis that U is an open 3-cell, it follows that there exists a polyhe-
dral 2-sphere S; in U such that S and J; Uaja, UJ, are in different components
of S3 -8, and

(3) S, © N(s, 6).
For each i (i=1, 2), let A{ denote an annulus in A; such that A; N S = Bd D; and
(4) p(x, S) < p(S1,8) for each x € Aj.

As above, the hypothesis implies that there exists a polyhedral 2-sphere S, such
that S and S; U (A; -~ Aj) are in different components of S3 - S, and

(5) p(x, S) < p(S;,S8) for each x€ S,.

We assume that S, and A; - Bd D; are in general position, so that each component
of S, N A; is a simple closed curve in Aj. Since Bd D; and J; are in different
components of S3 - S, it follows that some component of A; N S, separates Bd D;
from J; in A;. Thus there exists a disk D' in S, such that every component of
(Aj UAZ)Nn Int D' is the boundary of a disk in A] U A}, nodisk in A; U A, has

Bd D' as its boundary, and Bd D' is a subset of one of the annuli A} and A5, say of
A'l . Now, by using methods described by Bing [4, p. 297], we obtain a disk D such
that
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BdD = Bd D',
IntD C U-(A;U A, US;), and
D c D'UN(A] UA;, 0).
Furthermore, in view of (4) and (5), this can be done so that
(6) p(x, 8) < p(8;,S) for each x € D.
We wish now to show that Diam D < 656. Suppose that

(7) Diam D > 66 .
Following methods described in [21, p. 66], we construct an arc pja; such that
(8) pia; - (ay Upy) € [U-(ajaz UA1 UA2)] N N(D; UA,, 6)

and no point of D is between a; and a point of S; on pja;. Let a,p, denote an
arc in D, U A,, let p,p; denote an arc such that

pop; - (p; UDpy) C S3-(suv),

and let J denote the simple closed curve pja; Uajaz U azpy Upzp;. Let S' de-

note the 2-sphere that is a subset of DU D; U A}. Since JN (D; UA})=p; and J
pierces S' at p,, it follows that J intersects D and thus that D intersects the arc

p;a;. Let a denote a point of D N p;a;. Now (7) implies that there is a point b in
D such that

(9) pla, b) > 36 .
It follows from (3) and (6) that there exists a point ¢ of S such that
(10) p(b, c) < &

and the rectilinear arc bc does not intersect S;. Let p;a denote a subarc of p;a;,
let ab denote an arc in D such that p;a U ab U bc is an arc, and let cp; denote an
arc such that

Let J' denote the simple closed curve pja U ab U bc U cp;. We have constructed
J'in 83 - S| so that the arc cp; Upja U ab pierces D) at p1 and does not inter-
sect Dy U (A} - py). Furthermore, it follows from (2), (8), (9), and (10) that the arc
be does not intersect D; U A, so J' links the simple closed curve J;. But this is
impossible, since S; separates J; from J' in S3. Thus our supposition (7) has led
to a contradiction; we conclude that

(11) Diam D < 66 .
Now (1), (2), and (11) imply that

Diam (D U A,) < ¢
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hence, there exists a disk R in D U A; such that
Diam R < ¢, BdR = Bd Dy, IntR C U.

Thus we have shown that S can be locally spanned from U at one of the points p;
and p,. As we indicated in the first paragraph of this proof, it follows from L9,
Theorem 10] that there is a point p such that S is locally tame from U at each
point of S - p.

THEOREM 2. If

(i) S is a 2-sphere in S3,

(ii) the components U and U, of S3 -8 are open 3-cells, and
(iii) S can be locally pevipherally collared,

then theve exist two distinct points py and pz of S such that, for each i (i=1, 2), S
is locally tame from U; at each point of S - p;.

Proof. It follows from Theorem 1 that, for each i (i =1, 2), there exists a point
p; such that S is locally tame from Uj at each point of S - p;. Harrold and Moise
have shown [14] that a 2-sphere in S3 cannot be wild from each of its complementary
domains at one of its isolated wild points. Thus we can require that p; #p,.

COROLLARY 1. If S is a 2-spheve in S3 such that each component of S3 - S is
an open 3-cell and the set W of wild points of S is O-dimensional, then W consists
of at most two points.

THEOREM 3. If
(i) V is an open subset of the 2-spheve S in S3,
(ii) the component U of S3 - S is an open 3-cell, and
(iii) V can be locally periphevally collaved from U,
then theve exists a point p such that S is locally tame from U at each point of
V - p.

With only slight changes, the above proof of Theorem 1 can be used as a proof of
Theorem 3.

COROLLARY 2. If
(i) S is a 2-spheve in S3,
(ii) the component U of S3 - S is an open 3-cell, and
(iii) W is the set of all points of S where S is wild from U,

then W has at most one isolated point. Furvthevmore, eitheyr W = ¢, or W consists
of a point, or theve exists a nondegenevate continuum in W.

Remark. With reference to the hypotheses of Theorems 1 and 2, it is interesting
to notice two 2-spheres, described by Bing [3] and Gillman [13], that are wild at
every point and have the additional property that each arc in them is tame. The 2-
sphere described by Bing can be locally peripherally collared, but one of its comple-
mentary domains in S3 is not an open 3-cell. Gillman modified Bing’s example to
obtain a 2-sphere S such that each component of S3 - S is an open 3-cell. However,
Theorem 1 implies that there is a component of S3 - S from which S cannot be lo-
cally peripherally collared.
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4. SPHERES THAT CAN BE PIERCED WITH TAME DISKS

In Theorem 4, we require that each tame arc on S can be collared from U.
Bing’s theorem on the existence of tame arcs on S [5] enables us to obtain, in the
proof of the lemma, two small tame arcs H; and Hj that intersect and cross at two
points such that a given point x is in the small component of S - (H; U H,). In the
proof of Theorem 4, we do not use the tameness of H; and H,, except to get two
such arcs that can be collared from U. Clearly, the hypothesis of Theorem 4 could
be changed accordingly.

THEOREM 4. If
(i) S is a 2-spheve in S3,
(ii) the compomnent U of S3 - S is an open 3-cell, and
(iii) each tame arc on S can be collared from U,
then theve exists a point p such that S is locally tame from U at each point of
S - p.
Proof. This theorem follows from Theorem 1 and the following lemma.

LEMMA. If each tame avc on the 2-spheve S in S3 can be collared from the
component U of 83 - S, then S can be locally peviphervally collared from U.

Proof. Let x be a point of S, and let V be an open set containing x. From
Bing’s theorem on the existence of tame Sierpifiski curves in S [5], it follows that
there exist two tame arcs H; and H, and a disk D such that

HiUH, C VNS,

H;NnH, =2auUb, where a and b are points,
H; crosses H; on S at each of the points a and b,
xeIntD Cc VNS, and
Bd'D € HyUH,.

For each i (i =1, 2), let H; denote the subarc of H; with end points a and b.
Clearly, Bd D = H] U H>. In the following two paragraphs, we complete the proof of
our lemma by showing that H) U H) can be collared from U.

By hypothesis, there exist two disks D; and D, such that
D;NS=H; cBdD; and D;-H; cU foreachi (i=1,2).

We assume that each D; is locally polyhedral at each point of Dj - Hj [2, Theorem
7]. With slight adjustments of D; - H; and D, - H,, we can require that the closure
of each component of D; N D, - (a2 U b) be either a simple closed curve or a span-
ning arc of one of the disks D; and D,. By using methods described by Bing [4, p.
297], we can further require that the closure of each such component contain exactly
one of the points a and b. There exist two disjoint arcs K; and K, in D; N D, and
a disk D) in D, such that
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K, UK, C Bd D},
each of K; and K, is the closure of a component of D} N D, - (a U b),
no component of D} N D, - (K; U K,) has an arc as its closure, and
a € Kjyand b e K,.

Let Y; denote the component of D] - D, that contains Bd D] - (K; U K3). No mere
than a finite number of components of D, N C1 Y; - (K; U K,) have closures that
separate Kj - a from K, - b in D,. Thus there exist two disjoint arcs K] and K,
in D, N C1Y; and a disk D} in D, such that

D,N S = HY,
K, UK, C Bd D},
K and K, are closures of components of D} N D5 - (a U b),
no component of D, N C1 Y, - (K] U K}) has an arc as its closure, and
a € K] and b € Kj.

From the requirement that the arcs Kj and K, are subsets of D, NCl Y, it
follows that no component of D] N D5 - (a U b) has a closure that separates Kj-a
from K; - b in D] . Thus there exists a subdisk D] of D] such that

K, UK, U H} C Bd D)

and the closure of each component of Int Dl ﬂ D N ClY, is a simple closed curve

containing one of the points a and b. Let Y denote the component of D] - D; that
contains Bd Dj - (K] U K5). Each component of D} - C1 Y] is an open disk that has
one of the points a and b on its boundary. Now we can use a modlflcatlon of Bing’s

procedure [4, p. 297] to move each component of Int D, N Cl Y slightly to one side
of Dz and to replace each component of Dl - C1 Yl with an open disk slightly to one
side of D, . We obtain a disk D' such that

1"t

D; ND, =K, UK,, H; UH, c BA(D{'uD;), D'uD, cU.

Thus we have shown that H] U H, can be collared from U.
THEOREM 5. If
(i) S is a 2-sphere in S3,
(ii) each component of S3 - S is an open 3-cell, and
(iii) S can be pierced on each of its avcs with a tame disk,
then S is tame.

Proof. The hypothesis implies that every arc on S is tame. Thus it follows
from a theorem proved by Doyle and Hocking [11] that S does not have an isolated
wild point. We combine this with Theorem 4 to conclude that S is locally tame at
each of its points. Thus S is tame [1], [17], [8].
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THEOREM 6. If
(i) S is a 2-sphere in s3 ,
(ii) for each € > 0, S can be approximated in the component U of S3 - S with a
map that moves no point morve than a distance €, and
(iii) each tame avc on S can be collarved from U,

then S is tame from U.

Proof. As observed by Hempel [15], it follows from the hypothesis and the
Sphere Theorem [18] that U is an open 3-cell. Thus by Theorem 4, there exists a
point p such that S is locally tame from U at each point of S - p. That S is tame
from U follows from [16, Theorem 1 and Corollary 2].

COROLLARY 3. If
(i) S is a 2-spheve in S3,

(ii) for each € >0, S can be approximated in each component of S> - S with a
map t‘hat moves no point move than a distance €, and

(iii) S can be pierced with a disk on each tame avc on S,

then S is tame.

5. 2-MANIFOLDS THAT ARE ALMOST TAME

Some of the theorems in Sections 3 and 4 can be adapted to a 2-manifold that
separates a 3-manifold. Of course, we need to formulate a suitable condition to re-
place the requirement that a complementary domain of the 2-sphere S in S3 be an
open 3-cell.

In all of the theorems stated in this section, M denotes a compact connected 2-
manifold that separates a connected 3-manifold M3, and U denotes a component of
M3 - M. Suppose there exists a sequence M;, M2, *** of polyhedral 2-manifolds
converging to M such that for some y € U each M; separates y from M in M3
and

(12) for some y > 0 and for each positive integer j, every unknotted simple
closed curve in MJ- of diameter less than y is the boundary of a disk
in M:.
J

We notice that these requirements are satisfied if M is a 2-sphere in S3 such that
the component U of S3 - M is an open 3-cell.

THEOREM 7. If M can be locally pevipherally collared from U, then there
exists a point p such that M is locally tame from U at each point of M - p.

Proof. We obtain a proof of this theorem by changing slightly the proof of Theo-
rem 1. We replace S3, S, S;, and S with M3, M, M;, and M3, respectively, and
unless otherwise specified, we follow the same procedure and use the same notation
as in the proof of Theorem 1.

Let p; and pz be two points of M, and let K be a disk in M such that
p; U p2 C Int K. We require that the disks D; and D, be subsets of Int K, and we
assume, for convenience, that M| separates J; UJ U aja from M in M3 and
that M; € N(M, 6). In view of (12) and the fact that each simple closed curve in
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A, U A, is unknotted, we assume further that each simple closed curve in each

A; N Mj is the boundary of a disk in Mj. In the proof of Theorem 1, we used the

fact that each component of s3 - S, is simply connected, to obtain the contradiction
that it is impossible for J' to link J; . Since we do not know that M3 - M; is simply
connected, we construct J' so close to K that it is impossible for J' to link J; .

We choose a positive number ¢ such that ¢ < & and

(13) each simple closed curve in N(K, o) can be shrunk to a point in the
component of M3 - M; that contains K.

Furthermore, we require that ¢ be so small that, for each arc p;x (i =1, 2) that
lies in N(M, o) and has diameter at least 36, there exist an arc p;b in p;x and a
point ¢ in K - (D; U D;) such that

(14) p;b C N(K, o)
and
(15) the rectilinear arc bc has length less than o and does not intersect

AjUD; UA, UD,.

We identify A} and A) as in the proof of Theorem 1, so that A} U A5 € N(K, o).
For convenience, we assume that M, C N(M, o). We obtain the disk D' in M, and
consider the case where Bd D' C A]. We adjust D' to a disk D in

D' U (N(M, o) N U). If we suppose that Diam D > 65, we can follow the procedure in
the proof of Theorem 1 to construct an arc p; b and a rectilinear arc bc satisfying
requirements (14) and (15) above so that b € D and the arc p; b U bc does not inter-
sect A; U (D) - p;). Let cp; be an arc in N(K, o) such that

cp; - (cUpy) € M3 - (MUU),

and let J' denote the simple closed curve p;b U bc Ucp;. As in the proof of Theo-
rem 1, we have constructed J' so that it links J; . It follows from (13) that J' can
be shrunk to a point in the component of M3 - M; that contains K. Thus, since M;
separates J; from K in M3, we have the contradiction that J' does not link J;.
As in the proof of Theorem 1, we have shown that M can be locally spanned from U

at one of the points p; and p,. Hence the conclusion of Theorem 7 follows from [9,
Theorem 10].

THEOREM 8. If each tame avc in M can be collared from U, then theve exists
a point p such that M is locally tame from U at each point of M - p.

Proof. Following Bing’s work on the existence of tame Sierpinski curves in a 2-
manifold in a 3-manifold [7, p. 513], we observe that the lemma we used in the proof
of Theorem 4 can be proved for a 2-manifold in a 3-manifold. Thus Theorem 8 fol-
lows directly from Theorem 7 and this adjusted lemma.

THEOREM 9. If M can be pievced on each of its avcs with a tame disk, then M
is tame.

Proof. We apply Theorem 8 in the manner in which we used Theorem 4 in the
proof of Theorem 5.
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