SMOOTH APPROXIMATIONS TO POLYHEDRA
Stewart S. Cairns

1. INTRODUCTION

This paper is concerned with relations between combinatorial and differential
topology. In studying such relations, we work with piecewise smooth homeomor-
phisms restricted to subcomplexes of differentiable triangulations of euclidean n-
space. This class of maps and spaces, although it is not a category, is appropriate
because it contains the relevant piecewise linear and smooth categories, together
with other spaces and maps useful in passing from one of these categories to the
other.

1.1. Vertical bars and carriers. If V is a set of point sets, |V| will denote the
union of the elements of V. If these elements are disjoint, the carrier (in V) of a
point X € |V| will mean the element of V containing x.

1.2, Omiltted modifiers. In the foregoing and subsequent definitions, parentheses
around a modifier indicate that it will sometimes be omitted for brevity.

We use K with or without indices to denote finite linear simplicial complexes in
euclidean n-space E™. Thus IKI denotes a polyhedron. Since we use open sim-
plexes, each point of |K| has a carrier in K.

Dimensions are indicated, where relevant, by superscripts. The empty set @&
has dimension -1. Except when we write K~*, for the trivial complex {p} , K de-
notes an m-complex (m > 0).

A topological manifold is said to be closed if it is compact and has no boundary.
A closed (n - 1)-manifold in E® surrounds each subset of its interior.

Closed, half-open, and open directed line segments are denoted by [qp], [ap),
(apl, and (ap); lap] is a vector.

The terms smooih, diffeventiable, and of class C* are used synonymously.

We depart from the piecewise smooth class for the sake of a result involving an
(n - 1)-manifold of differentiability class Cl1.

THEOREM 1. For each polyhedron |K| C E® (n> 1), there exist a closed
Cl-( - 1)-manifold M*-Y and a set I of vectors such that

(a) M- surrounds |K|,
(b) if [ap] € J, then p € M*-1 q € |K|, and [pa] is normal to M2-1 at p,

(c) the intevior N of M™~1 satisfies the conditions

N=1|J| anda WN-|K| = |{[pq): [pa] € 3}|

(the horizontal bar denotes closure),
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(d) the half-open segments {[pq): [pql € I} are disjoint,
(e) if r € [pq) and [pal € J, then p is the unique neavest point of M2-1 fo r.
The theorems stated in this introductory section will be proved later.

THEOREM II. For each m-complex K =K™ C E® (0 < m < n), there exists a
smooth real function pyx on E™ with the following properties:

(a) pi is determined by K and m + 1 positive parameters;
(b) for a certain pair of neighborhoods N,(K) and N(K),

pyl(x) = 0 (x € N,(K)),
0 < pp(x) <1 (x € N(K) - NyK)),
p(x) = 1 (x € E® - N(K));

(c) each set =, = {x € E™ pg(x) = t} O<t<1)isa C°-(n - 1)-manifold sur-
rounding |K|;

(@) for 0 < 7 <t<u<\1l,there exists a smooth isotopy of E™ onto itself that
takes Zi onto Z4 and is the identity on IKI and outside Z.,

The closure of the interior of Z; can be retracted onto |K| by a homotopy that
is an isotopy up to (but not including) the end. The isotopy can be interpreted as a
shrinking during which the family 1Z4: 0 <s < u} is preserved. Furthermore, the
isotopy can be made smooth, except for an arbitrarily small interval near the end;
but we believe a final interval of nonsmoothness to be unavoidable.

An alternate known procedure leading to smooth surrounding manifolds of !K] is
as follows. On a regular neighborhood N of ]KI one can define a polyhedral sur-
rounding manifold Pn-1  with a transverse field of line segments covermg N - IKI
There exists (see [1], [4]) a C”-(n - 1)-manifold approximating P®-! and surround-
ing IK However, this manifold depends on a triangulation of a neighborhood of
lKI, and the proof of its existence is not constructive. Our smooth surrounding
manifolds {2}, which depend only on K and on (1 + dim K) parameters, are de-
fined by a specified function pj. -This fact permits simple proofs of Theorem II (d),
of the statements in the preceding paragraph, and of the following result.

THEOREM III. Each special isotopy (see Section 11) taking a complex Kq onto a
complex Ky can be extended to an isotopy taking a family of survounding C*-(n - 1)-
manifolds iZOt 0<t<1} for Ko (see Theorem II)into such a family
{21 0<t <1} for Ky with =y, going onto Ziy.

We note the related (but only partly developed) work of Thom [3], who defined his
s'uzirounding manifolds (variétés tapissantes) as equipotentials of a distribution on
K}.

Let Z be one of the manifolds Z,, and let N denote its interior. Then N and Z
can be built up by a smooth handlebody construction and a sequence of smooth sur-
geries, respectively. If K is constructed simplex by simplex through a sequence of
subcomplexes, then a handlebody addition for N and a surgery for Z correspond to
each adjunction of a simplex. In Section 9, we point out an isomorphism between the
construction of N and the building up of a block bundle structure [2] in the piecewise
linear category.
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A block-bundle structure, whether smooth (as in this paper) or piecewise linear,
may be the best substitute for a disk bundle in the case of a combinatorial manifold
so imbedded in a euclidean space as to admit no disk bundle.

Marston Morse and the writer are preparing a joint paper in which some of the
present work will be used to study relations between combinatorial and differential
Schoenflies problems.

2. SHORTEST SEGMENTS AND v-VECTORS

All geometric objects throughout this paper are in E™,

2.1. Definitions. Let p denote the euclidean metric. For each point p and each
set C, a neavest point of C to p is a point q € C such that p(p, q) = p(p, C). If q is
such a point and g # p, we call [pal, [pq), (pal, (pq) shortest segments from p to C,
and we call [qp] a v-vector (from C at q) [see 1.2; the symbol v is suggested by
the word normal |. If C is a closed smooth manifold, then the v-vectors from C
are the sufficiently short normal vectors.

The symbols B™(p, £€) and S™ !(p, £) are used for the open euclidean n-ball and
the (n - 1)-sphere with center p and radius €. We also use the notation defined by

s5™'(p) = 8™ '(p, p(p, )  (center p, through q),

B(p) = B™p, p(p, 9)).

For each subset C of E™ and each £ > 0, let

(a) N(C, &) = {x e E™ p(C, x) < £},
(2.1)
(b) Z(C, €) = {x € E™ p(C, x) = ¢},

with the convention Z(@, &) = N(®, €) = @.

2.2. The vadii 3(C, £). If C # @, then each vector [qp], of length £ and with
q € C and p € Z(C, €) is called a radius (vector) of Z(C, €). We denote by J(C, &)
the set of all radius vectors of Z(C, ¢), and by JO(C, &) the set of open radii

{(ap): [ap] € J(C, €)}.

2.3. Chavacterization of nearest points. (a) If p € C, then p is the only nearest
point of C to p. (b) If p € C - C, there is no nearest point of C to p. (c) Suppose
pe EP-TC. If ¢ >0 exists such that C N S™ " (p, €) # #and C N BY(p, &) = &, then
cn Sn‘l(p, €) is the set of nearest points of C to p. Otherwise, no such nearest
points exist. Obviously, &€ = p(C, p), if there are nearest points.

LEMMA A. If [pql is a shortest segment from p to C and if x € (pql, then q
is the only nearest point of C to Xx.

This follows from 2.3 (c) and the relation —Bg(q) - Bg(q) =q.

LEMMA B. If [gp] € J(C, &), ther (a) [ap] is a v-vector from C and a shortest
segment from q to Z(C, €); and (b) [pq] is a v-vector from Z(C, &) and a shortest
segment from p to C.

Proof. Since all points of Z(C, €) are at distance ¢ from C,

(2.4) B™q, €) N Z(C,e) = ¢ = B™p,e) N C.
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From 2.3 (c), it follows that p is a nearest point of Z(C, £) to q and q is a nearest
point of C to p. The lemma now follows from Definitions 2.1.

COROLLARY Bl. If [ap] € J(C, &), then (a) C N [qp] = q and Z(C, £) N [ap] = p,
and (b) the open vadii JO(C, £) ave disjoint.

Proof. Part (a) follows from (2.4). If (b) were false, there would exist two un-
equal radii (qp) and (sr) in JO(C, £) with a common point x. Lemmas A and B
would imply that p=r and q = s, so that (qp) = (sr).

COROLLARY B2. If J(C, £) covers N(C, ¢) - C, then |JO(C, ¢)| = N(C, ¢) - C,
and each point of N(C, €) - C has a carvier in JO(C, E)

Proof. This corollary follows from Corollary Bl and Section 1.1.

3. SURROUNDING MANIFOLDS

3.1. The function ¢ and the angle function «. Let J' denote a set of disjoint
segments (closed, open, or half-closed), and let S®~! denote the unit sphere in E™,
The function associated with J' will mean the function ¢: |J'| — S®-1 such that, for
each x € N(C, ¢) - C, ¢(x) is the unit vector parallel to the carrier of x in IJ ' | .

We shall denote by a the angle function for segments and lines, with the stipulation
that 0 < o < 7 if both arguments are directed and 0 < @ < 7/2 otherwise. Segments
are directed by definition, but lines need not be.

THEOREM IV. If JO(C, ) covers N(C, g) - C, then the function associated with
JO(C, ¢) is defined and is a map ¢: N(C, €) - C — Sn'

Proof. From Corollaries Bl and B2 it follows that ¢ is defined and is a func-
tion N(C, ) - C — Sn-1, We shall deduce its continuity from the next lemma.

LEMMA C. Under the hypotheses of the theorvem, let (ap) denote the carvier in
0(C €) of a point x € N(C, £) - C. Then, for each £'> 0, theve existsa 6 > 0 so
small that each element of JO(C g) intersecting B™(x, 6) also intersects B"(q, &").

Proof. Let & be so small that B™(x, 6) C BG(p) N [N(C, £) - Cl. If y € B*(x, 4)
and (sr) is the carrier of y in JO(C, €) [see Corollary B2] then, by 2.3 (c),
s € Se-l(y) - Bj(p). We can arbitrarily restrict the angle a([px] [pyl) by restrict-
ing the upper bound 6 on p(x, y) By a sufficient restriction on that angle, we can
ensure that the part S2-!(y) - B3(p) of S3-!(y) which “bulges out” of BY(p) is en-
tirely within distance €' of q. '(Il‘hls proves Lemma C. :

COROLLARY C1. For each 9 > 0 there exists a 6 > 0 such that
a((ap), (sr)) < 6 if (sr) € JO(C, g) and (sr) intersects B%(x, 6).

Proof. Let 6 and &' be so small that each line meeting both B™(q, £') and
B"(x, 6) makes an angle less than 6 with (qx), where ¢' and 6 are related as in
Lemma C. The corollary follows because (qx) C (qp) and (yz) C (sr), so that

a((gx), (yz)) = a((gp), (sr)).
Corollary C1 completes the proof of Theorem IV.

LEMMA D. If J%C, €) covers N(C, €) - C, then (a) Z(C, te) is a Cl-(n - 1)-
manifold for each t (0 <t < 1), and (b) N(C, €) - C is the disjoint union of the
manifolds Z(C, te) (0 <t < 1). If C is of finite diameter, each Z(C, te) survounds
C. The hypothesis of this lemma is fulfilled for all € > 0 if C is convex, and for no
e if C is a triangle, for example.
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Proof. The second sentence of Lemma D is easily verified.

Let x be a point of N(C, &) - C. Then, for some t (0 <t<1), p(C, x) =tg, so
that x € Z(C, te). Let (qp) denote the carrier of x in J Oc, €) [Corollary B2]
Then X is a nearest point of Z(C, te) to p and to q.

Hence, the spheres S~ l(q) and Sh” 1(p), which are externally tangent at x, en-
close no pomts of Z(C, ts) [2.3 (e)]. Smce p(q, y) < te for y € Bl(q) and
plq, z) > te for z € Bn(p) it follows from Theorem IV that a radius (sr) € JO(C, &)
that 1ntersects a sufficiently small neighborhood of x must meet S2-1(q), Z(C, teg),
and S3- (p) in one point each, in the order named. It follows that Z(C te) is an
(n - 1)-man1fold and that the common tangent plane of S~ 1(p) and s2- l(q) is tangent
to Z(C, te). The remainder of the proof and the followmg corollar1es offer no diffi-
culty.

COROLLARY Dl1. Under the hypothesis of Lemma D, JO(C, €) is a field of open
line segments ovthogonal to the family of manifolds {Z(C, te): 0 <t < 1}.

COROLLARY D2, If the hypothesis of Lemma D is satisfied and if either C or
- C is of finite diameter, then the map ¢ is onto.

4. ADMISSIBLE SETS

Notation. Hereafter, with occasional exceptions, if a capital letter denotes a
simplex, the corresponding lower case letter will denote its dimension, so that
A =A%, B=B°, and so on. It will be understood that each simplex mentioned is in
K™,

Let K™ be an m-complex (0 < m < n), and let ¢ = ({g, **-, {,,) be an ordered
set of m + 1 positive numbers. We shall use the notation

) @) N&™, ¢) = U{N@, ¢): A e K™} [see (2.1)],
4.1
(b) Z(K™, £) = N(K™, ) - N(K™, ¢).

Note that N(K™, t) is a neighborhood of |K™|. Together with (K™, €), it is de-
termined by K™ and ¢.

Admissibility conditions. We call € = (g, >, £,,), N(K, £), and Z(K, ) admis-
sible (for a subcomplex K of K™) [see 1. 2] provided the following three conditions
are fulfilled: (a) 0 < ¢, <&;/2 (a=0, - 1); (b) if K2 is the a-skeleton of
Kand 0 <a <dimK, then {, is less than the d1$tance from |K?2| to the set of
barycenters of the simplexes K -K?2; (c)if A, B € K and

(4.2) ANB=C (-1<c<min(a,b)),
then
(4.3) N(A, £)) N N(B, £) € N(C, €./2) (6. =1 if ¢ = -1).

LEMMA E. If XC E", Y C E", and X is compact; then, for each € > 0, there
exists a number y > 0 such that N(X, y) N N(Y, y) CNX NY, ). The latter condi-
tion implies

NX, y)NNY,y) cNXNY,e) (O<y <y, 0<y"<y).

The proof of Lemma E is straightforward.
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THEOREM V. For each finite complex K™ C E® (0 < m < n), admissible sets
exist.

Our proof will be inductive.

Basic step. There exists a set { satisfying (1) admissibility conditions (a) and
(b) and (2) the condition N(A, o) N N(B, £o) = § for each pair {A, B} C K such that
A NB=¢. This follows from Lemma E with X N Y = @.

Hypothesis. For some h € (1, ---, m - 1), there exists a set { satisfying (1) ad-
missibility conditions (a) and (b), and (2) the condition

(4.4) N(A®, ¢_,) N N(BP, ¢_, ) © N(C°, ¢_/2)

for each triple {A?, BP, C°} € K™ such that AN BP=C¢ (-1 <c<h - 1).

The basic step above verifies the hypothesis for the case h = 1. By Lemma E, if
{1, is sufficiently small, then

N(A?, £) n N(BP, ¢,) € N(AP-L ¢, | /2)

for each triple {A2, BP, AR-1} in K™ gatisfying (4.2) with ¢ =h - 1. With ¢, thus
restricted, admissibility condition (a) merely imposes new upper bounds on
€ps1s 5 €m), and admissibility condition (b) continues to hold.

We have proved that £ can be chosen so as to satisfy admissibility conditions (a)
and (b) and condition (4.4) for each triple { A, B, C} < K such that (4.2) holds.
Since a > ¢ and b > ¢, admissibility condition (a) implies that {_ < ¢_,; and
£, < ¢.41- Condition (4.4) therefore implies (4.3), by the last sentence in Lemma E.
This completes our proof of Theorem V.

5. GEOMETRIC LEMMAS AND DEFINITIONS

Notation. Linear k-dimensional subspaces of E™ will be denoted by Ek
(0 <k <n). A formula 7: E* — EK will mean that 7 is the projection (orthogonal if
k > 0) of E® onto EK

Definitions. The sets Z(Ek, £) and N(Ek, e) [see (2.1)] will be called the cylin-
dvical (n - 1)-manifold and vegion, respectively, with axis EX and radius ¢
(0 <k <'n). Note that each Z(E9, ¢) is a sphere and each Z(En-1, ¢) is a pair of
parallel (n - 1)-planes.

LEMMA F. Let X be a subset of a k-plane EX (0 <k <n). A point q is a
neavest pomt of X to a point p € E® if and only if q is a nearest point of X to mp
(7: E® — EK),

This is a consequence of the following obvious generalization of the Pythagorean
Theorem:

(5.1) p?%(X, p) = p2(X, mp) + p%(p, 1p)  (p-€ E*, X C EX),

The following results are similarly established.

LEMMA G. Let X be a subset of EX (0 <k <n), and let Y = Z(EX, g) N 7-1X
for some g > 0 (m: E® — EK), A point p is a neavest point of Y to a point of Ek if
and only if wp is a nearest point of X lo (.
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LEMMA H. Let X be an open set velative to EX (0 <k <n). Then (a) Z(X, €)
intersects Z(EX, €) in the set

SEX, e)N 71X (m: E® > EY)

(b) the part of Z(X, €) not on Z(Ek, €) is on N(Ek, g) N ZX - X, ), and
(¢) NX, &) -7"1X c NX - X, &).

6. CONSTRUCTION OF ADMISSIBLE NEIGHBORHOODS AND BOUNDARIES

Notation. Hereafter, K™ denotes an arbitrary, fixed m-complex in E™
(0 < m < n); K? is its a-skeleton (-1 < a < m); K denotes a subcomplex of K™ ;
and £ = (£g, ***, &m) denotes an arbitrary, fixed admissible set for K™ . The
boundary complex of a simplex A is denoted by BA = {B: B< A}, pAO =K-! = {4},
where < means “is a boundary face of.”

Definition of a geneval step. Assume that a concept, process, or property Q has
been defined or proved for all subcomplexes of K - A, where A is a principal sim-
plex of some complex K C K™ (that is, A is not a face of any other simplex of K).
A geneval step (in defining ov proving Q for K™) consists in giving a definition or
proof of Q for K based on the assumption of Q for K - A. We shall sometimes as-
sume that dim K = dim A, implying a construction of K™ by successive additions of
simplexes in order of nondecreasing dimensions.

LEMMA J. The admissibility of § implies that N(K©, ¢) and Z(KC, ) ave the
disjoint unions of the closed n-balls B2(AQ, £,) and of the (n - 1)-spheres
sn-1(A0 | ¢,), vespectively (A® € K9).

This lemma, a direct consequence of the definitions, will be basic to several
inductive proofs.

We symbolize the general steps in defining N(K™, ¢) and Z(K™, ¢) as a pair of
transitions

(@) N(K - A,¢) »— NK, &) (a>0),
(6.1)

(b) Z(K - A, ) »— Z(K, ¢).
Lemma J takes care of the cases a = 0.

The relation
(6.2) N(|BAl, &) c N(BA, £/2) c N(BA, &)

is a consequence of admissibility conditions (c) and (a) (with BA in place of K™) in
Section 4. It implies the following result.
LEMMA K. If B € K - BA, then N(A, £,) NN(B, €,) C N(BA, £/2).

LEMMA L. Let

Il

(a) DA, ) = N(A, £,) - N(BA, ¢),
(6.3) (b) o(A, €) = Z(BA, £) N N(A, ¢,),

(c) T(A, ) = Z(A, £,) - N(BA, ).
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Then

6.4) (a) N(K, §) = N(K - A, £) U A(A, ¢,
6.

Proof. The transition (6.1) (a) can obviously be made by adjoining
N(A, ¢,) - N(K - A, &) to N(K - A, £). But, by Lemma K,

AA, 8) = N(A, £,) - N(K - A, §).

In fact, equations (6.3) all hold with K - A substituted for BA. These equations,
after the substitution, imply equations (6.4).

Definitions. The set G(A €) is the deleted part of Z(K - A, £). The sets
A(A, ¢) and T(A, ¢) are the adjoined parts of N(K, ¢) and of Z‘K €), respectively.

COROLLARY L1. The transition N(K - A, £) —»— N(K, ¢) can be effected by
adjoining AA, €) to N(K A, §). The twmsztzon Z(K - A, ) =»— Z(K, €) can be
effected by deleting o (A, ) from Z(K - A, ), then ad]ommg T(A, €) to the result-
ing set. The deleted and adjoined parts depend only on AU BA and €.

We have stated Corollary L1, which follows directly from Lemma L, so as to
prepare for a later 1nterpretat1on of the transition N(K - A, g)—— N(K £) as the
addition of a handle and of Z(K - A, £) - — Z(K, £) as a surgery.

Let n =(ng, ***, 7a) be an ordered set of a + 1 positive numbers. The 7 -
collar. and the n-core of A are defined as follows [see (4.1)]:

(a) c(A, n) = AN N(BA, n) (the n-collar),
(6.5)
(b) (A, n) = A - ¢(A, n) (the n-core).
The closed 5 -~collar and 7 -core are c¢(A, n) and y(A, n), respectively.
LEMMA M. The adjoined part f(A, €) of Z(K, &) is given by the formula

T(A, &) = (B, &) N7-13(A, ) (m: E® — E?),

where E2 D A and

(€Z-¢HV2 (c=0,,a-1).

(6.6) Nc
Proof. The relation
(A, &) - Z(E2, &) n 7 1A < n(|pAl, €,) < N(BA, ¢)

follows from Lemma H and relation (6.1). Hence, by (6.3) (c), T(A, €) is the closure
of the part of Z(E?, £,) N 7~ A outside all the mamfolds {Z(C €.): C € BA}. That
is, p € T(A, ¢) if and only if

mpe A, plp, ) =2¢, pC,p>¢L
Applying relations (5.1) with X = C, we conclude that p € T(A, ¢) if and only if

pe (B2, &) Na A  and p(C,ap) > (€% -¢2)1/2 =4 (C e BA).
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The lemma follows.

For each q € E2 | the set =(E2, ¢,) N n~lq is the (n - a - 1)-sphere with center
q and radius §_ in the normal (n - a)-plane to E? through q. This yields the fol-
lowing result.

_ COROLLARY M1. The adjoined set T(A, {) is homeomovphic to
v(A, n) x sp-a-1,

7. THE RADI. PROOF OF THEOREM I

Definition. A radius of Z(K, £) will mean a shortest segment from a point of
[Kl to the set Z(K, ¢). The set of all such radii will be denoted by J(K, §). K
[ap] € J(K, €), then (qp) will be called an open radius. Let

J%K, ¢) = {(ap)|[ap] € I(K, &)}.
The sets of negatives of the radii of Z(K, £) will be denoted by

I, &) = {[pal: [ap] € I, O},

32K, ©) = {(pa): [pal € I,(, O} .

They are v-vectors from Z(K, {) [Definitions 2.1].
THEOREM VI. (a) N(K™, ¢) = |J(K™, ¢)| and NK™, ¢) - |K| = |[70%&™, ¢)].
(b) The radii IOK™, €) are disjoint. (c) The function
Y N(K™, ¢) - |[K™| - S™Y (the unit sphere)
that maps each point x € (qp) € JO(K™, ¢€) onto the unit vector pavallel to (qp) is
continuous and onto.

Hypothesis. Theorem VI holds for some complex K - A ¢ K™ (a > 0), where A
is a principal simplex of K.

LEMMA N. The transition J(K - A, £) —— J(K, ) can be made as follows:
(a) From J(K - A, §) delete the set J5 of radii terminating on N(A, €,).

(b) To IJ(K - A, §) - I adjoin the vadii J,, of Z(E?, £ ) (E®D A) terminating
on T(A, £) [Lemma L.

(c) Finally, adjoin the radii I of Z(K, &) from points of the n-collar c(A, n).

Proof. (a) The deletions. If [qp] € J(K - A, £), then p is a nearest point of
ZK-A,8) toq. p'e Z(K, £) - Z(K - A, £), then p' is outside (and q is inside)
Z(K - A, £). Therefore,

plq, p') > plg, Z(K - A, ) = p(q, p).

It follows that [qp] € J(K, £) unless, of course, p € N(A, ¢,) C N(K, &).

(b) The addition of Jy . The radii of Z(E2, £,) are of length ¢_, and T(A, ¢) is
the part of Z(K, §) at distance ¢, from A.

(c) The addition of J.. As a consequence of the hypothesis, the terminal points
of the radii (J(K - A, ) -J5)U J,, cover Z(K, £). The set J(K - A, §) - J5 contains
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the radii from IBAI to Z(K, ¢). Hence, by the preceding two paragraphs and Lemma
M, only the radii from c(y, n) remain to be introduced.

We complete the proof of Theorem VI by showing that
|7 =N, €) - [(JK - A, &) -T5)UJ,| =N, (introducing N).

From the proof of Lemma N, it follows that the deleted radii begin on |,8A| and
terminate on Z(K - A, ) N N(A £,). As in the proof of Lemma M, one can verify
that the projection : En — E2 > A maps IJ5 | into A. One can also verify the
relation

N_ C N(A, £ ) n 7 ey, 7).

Let [qp] be a radius from a point q € ‘BAI to a point p € T'(A, £). Then, by the
proof of Lemma N, p is also the terminal point of a radius [q'p] € Jy, where
q' € (A, n) - v(A, n). From Lemmas F and G it follows that q' is a nearest
point of ¥(A, n) to q and that q is a nearest point of T(A, {) to q" for each

q" € [qq']. Since a radius from q" cannot intersect (qp) or (q'p) [Lemma A],
[q "p] € J.. Thus J_. covers the closure [qq'p] of the interior of the triangle qq'p.
The union of the closed triangular regions [qq'p] as [gp] ranges over the radii from
points of ],BAI to points on T'(A, )N Z(K - A, ¢) is easily shown to be N Parts
(b) and (c) of Theorem VI are proved by the methods used to prove Corollary B1 (b)
and Theorem IV.

Proof of Theorem I. Let C = E™ - N(K, ¢), and let € = {_, where a = dim K.

The hypotheses of Lemma D are satisfied, with |39(cC, €)| < IJO(K ¢)|. Therefore
M-l = 3(C, te) satisfies the requirements of Theorem I for each t (0 <t < 1),
where J is the set of closed subvectors of J (K ¢) from Mn-1l to |K| The mani-
fold M™-1 can be confined to an arbitrary ne1ghborhood of |K| by an upper bound on
€. This is consistent with the proof of Theorem V. We remark that the lengths of
the inner normals from Z(C, te) take on values from (1 - t){_ to ¢, - t¢_, inclu-
sively.

8. SMOOTH SURROUNDING MANIFOLDS

Let ¢ be the function defined on the reals by
0 t>-t>0)),
u(t) =
exp(2-t)-!  (t%-t<0),

and let @ be defined by

t
wlt) = k S w(r)dr,

where k is chosen so that w(t) =1 (t > 1). For each pair of parameters u and v
(u <v), let W,y be defined by

0 o) = w(f,"jl) .
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Then w, , is smooth, and

0 t<u),

Wy V(t) =
’ 1 (t>v),

why®) >0 (@<t<v).

For each A € K, let a function p 5 be defined on E™ by p s(x) = wu,v(p(A, x))
(u=1¢,/2, v=2~,,). Then it follows directly from the definitions that

(a) N(A, ¢,/2) = {x: pp(x) = 0},
(8.1) (b) N(A, £,) - N(A, §,/2) = {x: 0 <pux) <1},
(c) E® - N(A, &) = {x: p(x) = 1}.
For K C K™, let py be defined by

pxx) = II pa).

AeK
Relations (8.1) then imply that
(@) N(K, ¢/2) = {x: pg(x) = 0},
(8.2) (b) N(K, §) - N(K, £/2) = {x: 0 <pglx) <1},
() EP - N(K, §) = {x: pyfx) = 1}.

LEMMA O. The function py is smooth on E™.
Proof. If dim K = 0, this is obvious.

Hypothesis. For some complex K with principal simplex A (2 > 0), pg_, is
smooth.

On 7-1A (m: E® - E2D A), pa is smooth, being a smooth function of the dis-
tance from E2. For x € E® - N(A, £,), pa(x) = 1. The complement of
71A U (E™ - N(A, £,)) is on N(A - A, ¢,), which is a subset of

N(gA, ¢/2) < N(X, £/2),

by admissibility condition (a) [Section 4] and the definitions. Therefore, by (8.2) (a),
p A is smooth wherever pyi_, #0. Hence pi=pg_aP A is smooth,

THEOREM VII. For each v (0 < 7 < 1), the set 2% (K, ¢) = {x: px)=7} isa
smooth manifold survounding K. It is on N(K, £) - N(K, £/2), and JO(K, ¢) is a field
of transverse open segments with ZJ",;. as a section,

Proof. On each [pgp;] € J(K, ), introduce a linear parameter z that increases
from 0 at pg to 1 at p; . Then, by definition,

N(K, ¢) - N(K, ¢/2) = |{(py,2p1): [pop;] € I, O}].
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If N(A, ¢,) intersects (p;/,p;) C [pop;l € J(K, £), then (P1/2P1) N N(A, E,) C 7-1(A)
(m: E* - E2 D> A). For

N(A, &,) - 771(A) © N(BA, ¢/2) c N(K, ¢/2),

as consequence of admissibility condition (a). Therefore, 7 maps (p;;,p;) into A,
which implies that p(A, p,) increases linearly with t on (p,,,p;). It follows that the
restriction of px to (p; /zpl) is a product of factors each otZ which, at a point

p, € (p1/2 p1), is either equal to 1 and has derivative zero with respect to z, or is
between 1/2 and 1 and has a positive derivative. Theorem VI now follows, the
smoothness being a consequence of Lemma O.

Theorem II is now easy to prove.

9. HANDLEBODIES AND BLOCK-BUNDLES

The results in this section are simple consequences of our previous results and
constructions. We give brief indications of proofs.

THEOREM VII. Let N’:-(K, €) be the neighborhood of |K| bounded by % (K, ¢)
[Theorem VII|, and consider the transitions

(a) N(K - A, ¢) —— N(K, ¢),
(b) N7(K - A, £) »— Ni(K, ¢),
(c) Z(K - A, ) —— Z(, &),
(@) 21K - A, ¢) —— ZX(K, §).

Each of steps (a) and (b) is a piecewise smooth handlebody addition of type a. Steps
(c) and (d) are, vespectively 1 @ piecewise smooth and a smooth suvgery, in which a
D2 x S™2-1 yeplaces an 2! x D2 [D is a topological disk, or closed ball].

Proof. In Lemma L, the adjoined part of N(K, ¢), A(A) = N(A, £,) - N(BA, ¢),
can be isotopically deformed onto 7-1%(A, n) N N(A, ¢,) [see (6.5) and Lemma M].
The adjoined part T'(A, ¢) of Z(K, ¢), which is on the boundary of A(A), can be kept
fixed during the isotopy. The isotopy can be defined with the aid of radii J(K, ¢'),
where ' is an admissible set slightly larger than and proportional to . It follows
that y(A, €) isa D2, o(A, €)= A(A, &) N N(K - A, £) is an S2-1 x D2-2 and T(A, ¢)
is a D2 X S™"-2_, The remaining details are straightforward.

In connection with the smooth cases (b) and (d), it is interesting to note that the
handlebody additions correspond to multiplying the left sides of the following defin-
ing relations by pa(x), thus:

Ny(K - A, §): pr_ax) < 7 == N (K, §): pg_a®)pakx) < 7,
ZEEK-A O pr a®) = T o> ZE(K, ) pr_a(®)palx) = 7.

The neighborhoods in Theorem VIII are easily seen to be closely related to the
block-bundle structures of Rourke and Sanderson [2]. The latter are in the piecewise
llinTar category; while N(K, ¢) is a smooth handlebody built up around a polyhedron

K]|.
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10. FURTHER ISOTOPY THEOREMS

THEOREM IX. The space Z(K™) of admissible sets for K™ is connected.

LEMMA P. Let E=(8g, v, ) and §'= (g, -, £1,) be admissible for K™,
where £; <, (i=0, ---, m). Then { can be deformed into §' in Z(K™) by a se-
quence of steps in each of which all but one of the §; ave held fixed, while that one,
say CJ, is veduced to the value C

Proof. Admissibility conditions (a) and (b) are obviously preserved during such
deformations. We turn to condition (c).

Assume that (§g, ***, {,,,) has been deformed into (§o, -**, £, £j+1, =", Em) in
Z(K™). We shall show that the latter set can be deformed 1nto
(CO, Tty Cj—].’ 5: Tty §1"r1)
in. Z(K™) through the family
€o, -, §j_1, (‘:j - §j)t+Cj, §j+1, ) (0 <t<L 1).

Let {A, B, C} € K™ be such that A N B=C (c < min(a, b)).
Casel (c>j, a>j, b>j). The relation
N(A, ¢1) N N(B, t}) © N(C, ¢./2)
holds because {' is admissible. It is preserved when {_ = ?;" is replaced by the

larger values (C Ei+¢; (0<t <L),
Case2 (c<j, a=j, b>j). If b>j, the relation
N(A, ¢,) NN(B, ¢}) C© N(C, £./2)
holds by assumption. It becomes apparent when {, = ¢ j is replaced by the smaller
values (§J5 - Cj)t + Cj . If b=j, ¢, is also replaced by these smaller values.

All other cases are covered by the assumption.

LEMMA Q. For each € > 0, there exists an admissible sel (CS , §;'n) for
K™ such that §3' <g (=0, *-, m).

Proof. The condition {§ < €, which implies {; < ¢, is consistent with the proof:
of Theorem V.

Given two admissible sets £ and €', let. {" be smaller than both of them. Then
€ can be deformed into " by the process of Lemma P, then into {' by a reverse of
that process. Theorem IX follows.

THEOREM X. If €= (£, ==, £) and &' = (£}, -, €},) ave admissible, then
[(€h - Codto+ o, (€} - EE + &y, =, (€, - E )t + €]
is admissible (0 <ty < --- <t < 1). Inparticular,
(€4 - EIt+ g, (€L - EDE+E,, o, €L - Jt+&_]

is admissible (0 <t < 1).
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The proof is like that of Lemma P, with
[go s "% gJ’ (§3+1 - §j+1)tj+1 + §j+1 s "7 (Cllrn - Cm)tm + Em]

in the inductive assumption.

__ THEOREM XI. Two piecewise smooth admissible neighbovhoods N(K, t) and
N(K, ¢') can be isotopically deformed into one another, and so can the corresponding
smooth neighbovhoods N%(K, £) and N%(K, ¢'). The deformations can be extended to
isotopic deformations of E™ onifo itself that ave the identity on some neighborhoods
of |K| and outside some neighborvhood of N(K, £) U N(K, ¢').

This follows easily from Theorem X.

Pyoof of Theorem III. Although a number of other isotopy theorems could be
proved, we confine ourselves here to a special class of isotopies.

Let.Kp be deformed into a complex K; by a continuous isotopy defined as fol-
lows. Each vertex v follows a path v(t) (0 <t < 1), and v; 0(t)---vik(t) is a simplex

of Ky (0 <t< 1) if and only if it is a simplex of K for t =0. A set { can be
chosen so as to be admissible for each K; (0 <t < 1). Then N(Ki, £) and N¥(K,, ¢)
(0 <t < 1) define deformations of the admissible neighborhoods and of the corre-
rsponding smooth neighborhoods of K into those of K; within the respective fami-
lies of such neighborhoods. If K is a continuous isotopy, then it can be extended to
an ambient isotopy [5, Chapter 5], and so can the corresponding isotopies of N(K,, ¢)
and N¥(K,, ¢).

Another type of isotopy can be associated with subdivisions. Let K' be a sub-
division of Kj; let { be admissible for K, and let {' be admissible for both K and
K', where {!< ¢, (i=0, -, m). We outline a deformation of N(K, ¢) into N(K', ¢').

_ Let Ao_be a vertex of K' not in K. Consider the neighborhood

N(, ¢')u N(A° , t€5) as t increases from 0 to 1. After a certain value (it is
£3/€0, if d is the dimension of the carrier of A0 in K'), the growing n-ball

N(AOQ, t{;) bulges out of the neighborhood N(K, {') and continues to grow until it
becomes a part N(AO, €y) of N(K', £'). Let such deformations be carried out si-
multaneously for all the vertices of K' not in K. Then let similar deformations be
effected for the 1-simplexes of K' not on 1-simplexes of K, with A', €} replacing
A0 ¢ 0 - Proceeding inductively in order of nondecreasing dimensions of j-simplexes
of K' not on j-simplexes of K, we arrive at an isotopic deformation of N(K, ¢') into
NK', ¢").

With the aid of parametrized factors of the form px(A, x) [see Section 8], we can
define deformations of N*(K, ¢') onto N(K', ¢').

We can apply Theorems IX, X, and XI to arrive at the following result.

THEOREM III (extended). Let K, be deformed into K| by a finite sequence of
continuous isotopies and subdivisions. Then theve exist covvesponding isotopies of
the admissible neighborhoods N(Kq, ) and the smooth neighborhoods N (Kq, ¢)
into the corvesponding neighbovhoods N(Kj, ¢') and N",;(K'l, €') within theiv rvespec-
tive classes. Restrictions of these isotopies apply to the bounding manifolds Z(K, €)
and =% (K, €). Such isotopies can all be extended into ambient isotopies [5].

The statements in the paragraph following Theorem II (Section 1) can be proved
with the aid of Theorem X and Lemma Q.
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