THE FUNCTOR [, Y] AND LOOP FIBRATIONS, I.

Martin Fuchs

Dedicated to R. L. Wilder on his seventieth birthday.

1. INTRODUCTION

There are several ways to define loop fibrations and to compare them with principal fibre bundles. Definition 1 of this paper (see Section 3) is motivated by the kind of classification theorem we obtain: If $\Omega(Y, y_0)$ is the space of loops in Y based at y_0 , and X is an arbitrary topological space, then the equivalence classes (Definition 3) of our loop fibrations are in one-to-one correspondence with the homotopy classes of maps from X to Y.

The maps that we admit between loop fibrations are analogous to principal maps: A principal map restricted to a fiber of a principal bundle is essentially given by a "left translation" by an element of the group. This leads to Dold's notion of a functional bundle [1, p. 249, proof of 7.5]. The same idea can be used to define functional fibrations for loop fibrations. It is interesting that in both cases there is a "universal" function space of fiber maps that is of the same homotopy type as the "classifying" space.

For the loop fibrations, the "universal" function space is well known: it is the space of all paths in the classifying space.

2. NOTATION AND BASIC CONCEPTS

Let Y be a pathwise connected topological space. A *path* W in Y is a pair (w, r) consisting of a continuous map w: $R^+ \rightarrow Y$ (R^+ is the space of nonnegative real numbers) and a number r in R^+ such that w(t) = w(r) whenever $t \ge r$. The space of paths in Y is defined by

$$MY = \{W \mid W \text{ is a path in } Y\}.$$

Its topology is the subspace topology of $Y^{R^+} \times R^+$, Y^{R^+} having the compact-open topology.

Let $W_1 = (w_1, r_1)$ and $W_2 = (w_2, r_2)$ be paths in Y such that $w_1(r_1) = w_2(0)$. We define the sum $\mu(W_1, W_2) = W_1 + W_2 = (w_1 + w_2, r_1 + r_2)$ of the two paths by the formula

$$(w_1 + w_2)(t) = \begin{cases} w_1(t) & (0 \le t \le r_1), \\ w_2(t - r_1) & (r_1 \le t). \end{cases}$$

The addition is not commutative, but it is continuous and associative whenever defined.

Received September 23, 1966.

This research was supported by the National Science Foundation.

For $y_0 \in Y$, let

$$E(Y, y_0) = \{W | W = (w, r) \in MY, w(0) = y_0\}$$

and

$$\Omega(Y, y_0) = \{ W | W = (w, r) \in MY, w(0) = w(r) = y_0 \}.$$

The spaces E and Ω both obtain the subspace topology from MY. The partial multiplication of MY makes $\Omega(Y, y_0)$ into an associative H-space with unit element $W_0 = (y_0, 0)$. (We denote the constant map from R^+ to y_0 by y_0 .) The partial multiplication of MY also induces an action $\Omega(Y, y_0) \times E(Y, y_0) \to E(Y, y_0)$.

The map ν : MY \rightarrow MY, defined by the formula ν (W) = -W = (-w, r), where

$$-w(t) = \begin{cases} w(r-t) & (0 \leq t \leq r), \\ w(0) & (r \leq t), \end{cases}$$

gives rise to a homotopy inverse in $\Omega(Y, y_0)$ in the obvious fashion. We need the following basic properties.

LEMMA 1. The maps p_M : MY \rightarrow Y and p_E : $E(Y, y_0) \rightarrow$ Y given by the formulas

$$p_{M}(w, r) = w(0)$$
 and $p_{E}(w, r) = w(r)$

are Hurewicz fibrations.

As an example we give the proof of the first property: Let $X \times I \xrightarrow{\bar{h}} Y$ be a map, and let $H_0: X \to MY$ be such that $p_M H_0(x) = \bar{h}(x, 0)$. Then \bar{h} gives rise to a map from X to MY: For each $\tau \in I$, consider $\overline{H}_{\tau}(x) = (\bar{h}_{+}(x, \tau - t), \tau)$, where

$$\bar{h}_{+}(x, \tau - t) = \begin{cases} \bar{h}(x, \tau - t) & (0 \leq t \leq \tau), \\ \bar{h}(x, 0) & (\tau \leq t). \end{cases}$$

Then $H(x, \tau) = \overline{H}_{\tau}(x) + H_0(x)$ is a covering homotopy.

We observe that this covering homotopy is equivalent to a path in the space of crossections of a fiber space over X induced by \bar{h}_0 from MY.

LEMMA 2. If $U \subset Y$ is contractible, then $p_M^{-1}U$ is fiber-homotopy equivalent to $U \times E(Y,\,y_0)$.

Proof. Since Y is pathwise connected, we may assume that U is contractible to y_0 ; let $k: U \times I \to Y$ be a contraction of U to y_0 , and let

$$\bar{k}_{+}(y, t) = \begin{cases}
\bar{k}(y, t) & (0 \le t \le 1), \\
\bar{k}(y, 1) = y & (1 \le t).
\end{cases}$$

Now define the map K: U \rightarrow MY by the formula K(y) = $(\bar{k}_{+}(y, t), 1)$. Then the maps

$$\alpha(W) = (p_M W, K(p_M W) + W) \qquad (W \in p_M^{-1} U),$$

$$\beta(y, W) = -K(y) + W \qquad (W \in E(Y, y_0))$$

form a fiber-homotopy equivalence α : $p_M^{-1}U \rightleftharpoons U \times E(Y, y_0)$: β .

Remark. Similarly,

$$\alpha(W) = (W - K(p_E W), p_E W) \qquad (W \in E(Y, y_0)),$$

$$\beta(W, y) = W + K(y) \qquad (W \in \Omega(Y, y_0)),$$

for a fiber-homotopy equivalence between $\Omega(Y, y_0) \times U$ and $p_E^{-1}U$. Both fiber-homotopy equivalences are equivalent to crossections in the fibrations $p_M \mid p_M^{-1}U$ and $p_E \mid p_E^{-1}U$, respectively, and the suitable homotopies form paths in the corresponding space of crossections. Therefore in the case of p_E the maps α and β are compatible with the action of $\Omega(Y, y_0)$; for example, the diagram

$$\Omega(Y, y_0) \times \Omega(Y, y_0) \times U \xrightarrow{1 \times \beta} \Omega(Y, y_0) \times p_{E}^{-1} U$$

$$\downarrow \mu \times 1_{U} \qquad \qquad \downarrow \mu_{E}$$

$$\Omega(Y, y_0) \times U \xrightarrow{\beta} p_{E}^{-1} U$$

is commutative.

3. THE THEOREMS

Definition 1. For a given based space (Y, y_0) , a loop-fibration is a quintuple (E, p, X, f, Y), where X is a topological space, $f: X \to Y$ is a map, and (E, p, X) is the fiber space induced by f from $(E(Y, y_0), p_E, Y)$. In general, we shall use the notation (E_f, p, X) .

In order to get a category of loop fibrations with respect to (Y, y_0) , let us look for fiber maps that are compatible with the action of $\Omega(Y, y_0)$ on the loop fibrations. Restricted to a fiber, such a fiber map is simply a map from one fiber of $E(Y, y_0)$, say $p_E^{-1}(y_1)$, to another fiber of $E(Y, y_0)$, say $p_E^{-1}(y_2)$, since we consider only induced fibrations. A path from y_1 to y_2 , that is, any element of $p_M^{-1}(y_1)$, provides such a map: the compatibility with the loop action is automatic.

We shall use (MY, $p_{\rm M}$, Y) as a "universal" functional fibration. For any two loop fibrations with respect to (Y, y_0), say (E_f, p_1, X_1) and (E_g, p_2, X_2), we define a functional fibration (M_f,g, p, X_1) as follows. Let

$$M_{g}Y = \{W | w(r) \in g(X_{2})\}$$
 $(W = (w, r) \in MY);$

then

$$M_{f,g} = \{(W, x) | W \in M_g Y, x \in X_1, \text{ and } p_M W = f(x)\};$$

that is, $(M_{f,g}, p, X_1)$ is induced by f from $(M_gY, p_M | M_gY, Y)$.

Definition 2. A fiber map k: $E_f \to E_g$ (inducing \bar{k} : $X_1 \to X_2$) is a loop-fiber map if there exists a crossection σ : $X_1 \to M_{f,g}$ ($\sigma(x) = (S(x), x)$) such that $k(W, x) = (W + S(x), \bar{k}(x))$ ((W, x) $\in E_f$).

Definition 3. Two loop fibrations with the same base space are equivalent, if they are fiber-homotopy equivalent through loop-fiber maps.

We notice that if $U \subset Y$ is contractible to y_0 , then $p_E^{-1}U$ and $\Omega(Y, y_0) \times U$ are equivalent as loop fibrations. We may consider

$$(p_{\mathrm{E}}^{-1}\,U,\,p_{\mathrm{E}}\,\big|\,p_{\mathrm{E}}^{-1}\,U,\,U)$$
 as induced by $i_{\,1}^{\,\cdot}\colon U\subset Y$

and

$$(\Omega(Y, y_0) \times U, pr_2, U)$$
 as induced by $i_2: U \rightarrow y_0 \in Y$.

The equivalence of these two loop fibrations is due to the fact that i_1 and i_2 are homotopic:

THEOREM 1. If f, g: $X \to Y$ are homotopic maps, then (E_f, p, X) and (E_g, p, X) are equivalent as loop fibrations.

Proof. Let k: $X \times R^+ \to Y$ be such that k(x, 0) = f(x) and k(x, t) = g(x) for $t \ge 1$. Then K(x) = (k(x, t), 1) defines a map from X into $M_g Y$. Let

$$\alpha(W, x) = (W + K(x), x)$$
 for $(W, x) \in E_f$,
 $\beta(W, x) = (W - K(x), x)$ for $(W, x) \in E_g$;

clearly, α and β form an equivalence of loop fibrations.

We now assume that Y admits a numerable covering ${\mathscr U}$ of open, contractible sets.

THEOREM 2. If (E_f, p, X) and (E_g, p, X) are equivalent loop fibrations with respect to (Y, y_0) , then f and g are homotopic.

Theorems 1 and 2 together form our classification theorem.

Proof (due to D. Puppe). An equivalence between (E_f, p, X) and (E_g, p, X) is given by a crossection $\sigma\colon X\to M_{f,g}$ and a fiber map $k\colon E_f\to E_g$.

If S denotes the composition $X \to M_{f,g} \subset MY \times X \longrightarrow MY$, then we require that k(W, x) = (W + S(x), x). Associated with S: $X \to MY$ we have the mapping \hat{S} : $X \times R^+ \to Y$, which can be extended to $X \times \hat{R}^+$ (\hat{R}^+ is the one-point compactification of R^+ ; since for each $x \in X$, S(x): $R^+ \to Y$ is constant for large $t \in R^+$, the extension is continuous, because $\{(x, t) \mid t \ge r(x)\}$ is closed). $\hat{S}(x, 0) = f(x)$, $\hat{S}(x, \infty) = g(x)$, and so f and g are homotopic.

Theorem 2 can also be proved by the methods of A. Dold (see [1]). I think this proof is of independent interest. We have to assume that Y admits a numerable covering $\mathscr U$ of open sets that are contractible in Y. We first establish the following property of loop fibrations: Let (E_f, p, X) be a loop fibration with respect to (Y, y_0) , and let $A \subset X$ be a set that admits a halo H (see [1]) in X. If $k_A: p^{-1}A \to E(Y, y_0)$ is a loop-fiber map that can be extended as a loop-fiber map to $p^{-1}H$, then it can be extended to E_f (as a loop-fiber map, of course).

Proof. (E(Y, y₀), p_E, Y) is induced from (E(Y, y₀), p_E, Y) by 1_Y . The functional fibration (M_{f,1_Y}, p_f, X) ((M_f, p_f, X) for short) is therefore induced from (MY, p_M, Y) by the map $f: X \to Y$.

The loop-fiber map k_A corresponds to a crossection σ_A : $A \to p_f^{-1}A$ that can be extended to σ_H : $H \to p_f^{-1}H$ in such a way that $k_H(W, x) = W + S_H(x)$ extends k_A . Note that $\sigma_H(x) = (S_H(x), x)$, where $S_H(x) \in MY$.

Let $\mathscr U$ be a numerable covering of Y by open, contractible sets; then, by Lemma 2, $p_M^{-1}U$ is fiber-homotopy equivalent to $U\times E(Y,y_0)$ for each $U\in \mathscr U$. The family $\mathscr V=\left\{f^{-1}U\middle|U\in \mathscr U\right\}$ is an open, numerable covering of X such that $p_f^{-1}(f^{-1}U)$ is fiber-homotopy equivalent to $f^{-1}U\times E(Y,y_0)$. Since $E(Y,y_0)$ is contractible, σ_A can be extended to $\sigma\colon X\to M_f$, according to [1, Corollary 2.8, p. 229]. If $\sigma(x)=(S(x),x)$, then k(W,x)=W+S(x) is an extension of k_A .

Second proof of Theorem 2. Assume (E_f, p, X) and (E_g, p, X) are equivalent as loop fibrations. Let $\alpha \colon E_f \rightleftarrows E_g \colon \beta$ be equivalences. Consider $(E_f \times I, p \times 1_I, X \times I)$. This is a loop fibration, induced by h: $X \times I \to Y$, h(x, t) = f(x) for all $t \in I$. Let $A = X \times \dot{I}$ and $k_A \colon E_f \times \dot{I} \to E(Y, y_0)$ be defined as

$$k_A(W, x, 0) = W$$
 and $k_A(W, x, 1) = G \cdot \alpha(W, x)$,

where G: $E_g \to E(Y, y_0)$ is the loop fiber map induced by g. Since $X \times \dot{I}$ admits a halo in $X \times I$, say $H = X \times [0, 1/2) \cup X \times (1/2, 1]$, and since k_A can be extended to $(p \times 1_I)^{-1}H$, k_A can be extended to $X \times I$, thus inducing a homotopy between f and g.

REFERENCE

1. A. Dold, Partitions of unity in the theory of fibrations, Ann. of Math. (2) 78 (1963), 223-255.

The University of Michigan and Michigan State University