THE FUNCTOR [ , Y] AND LOOP FIBRATIONS, I.

Martin Fuchs

Dedicated to R. L. Wilder on his seventieth birthday.

1. INTRODUCTION

There are several ways to define loop fibrations and to compare them with prin-
cipal fibre bundles. Definition 1 of this paper (see Section 3) is motivated by the
kind of classification theorem we obtain: If Q(Y, yg) is the space of loops in Y
based at yg, and X is an arbitrary topological space, then the equivalence classes
(Definition 3) of our loop fibrations are in one-to-one correspondence with the
homotopy classes of maps from X to Y.

The maps that we admit between loop fibrations are analogous to principal maps:
A principal map restricted to a fiber of a principal bundle is essentially given by a
“left translation” by an element of the group. This leads to Dold’s notion of a func-
tional bundle [1, p. 249, proof of 7.5]. The same idea can be used to define functional
fibrations for loop fibrations. It is interesting that in both cases there is a “univer-
sal” function space of fiber maps that is of the same homotopy type as the “classify-
ing” space.

For the loop fibrations, the “universal” function space is well known: it is the
space of all paths in the classifying space.

2. NOTATION AND BASIC CONCEPTS

Let Y be a pathwise connected topological space. A patk W in Y is a pair
(w, r) consisting of a continuous map w: R*— Y (R?* is the space of nonnegative
real numbers) and a number r in R* such that w(t) = w(r) whenever t > r. The
space of paths in Y is defined by

MY = {W| W is a pathin Y}.

_|.
Its topology is the subspace topology of YR X R* YRJr having the compact-open
topology.

Let W =(w;, rj) and W, = (w2, r2) be paths in Y such that w;(r;) = w2(0).
We define the sum p(W;, W,) =W+ W, =(w;+ wp, r|+r,) of the two paths by
the formula

wl(t) (Ostsrl)y
(wi+wy)(t) =
wolt-ry)  (r;<t).

The addition is not commutative, but it is continuous and associative whenever
defined.
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For yg € Y, let

E(Y, yg) = {WI W= (w, r) € MY, w(0) = yo}
and
Q(Y, yo) = {WI W = (w, r) e MY, w(0) = w(r) = YO} .

The spaces E and © both obtain the subspace topology from MY. The partial
multiplication of MY makes Q(Y, yg) into an associative H-space with unit element
Wo = (yg, 0). (We denote the constant map from R' to y, by y,.) The partial
multiplication of MY also induces an action Q(Y, yg) X E(Y, yo) — E(Y, yg).

The map v: MY — MY, defined by the formula v(W)=-W = (-w, r), where

wi(r - t) (0<t<r),
_W(t) =
w(0) (r <t),

gives rise to a homotopy inverse in (Y, yo) in the obvious fashion. We need the
following basic properties.

LEMMA 1. The maps Pyp MY — Y and pg: E(Y, yo) — Y given by the formu-
las

MW t) = w(0)  and  pg(w, r) = w(r)

are Hurewicz fibrvations.

As an example we give the proof of the first property: Let X X I h Y be a map,
and let Hg: X — MY be such that pyHo(x) = h(x 0). Then h gives rise to a map
from X to MY: For each 7 € I, consider H,_(x)= (h+(x T - t), 7), where

) hx, 7-t) (0<t<7),
hy(x, 7-t) =< _
h(x, 0) (1 <t).

Then H(x, 7) = ET (x) + Hy(x) is a covering homotopy.

We observe that this covering homotopy is equivalent to a path in the space of
crossections of a fiber space over X induced by hg from MY.

LEMMA 2. If U CY is contractible, then py; lu is fiber-homotopy equivalent to
U X E(Y, yo)

Progf. Since Y is pathwise connected, we may assume that U is contractible to
vo; let ke UXI— Y be a contraction of U to yo, and let

_ k(y, t) (0<t<1),
k(y,t) =

k(y, )=y (1<),
Now define the map K: U — MY by the formula K(y) = (k,(y, t), 1). Then the maps

(W) = (pp W, KlpyyW) +W) (W e ppiU),

]

B(y, W) = -K(y) +W (W € E(Y, yo)
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form a fiber-homotopy equivalence «: pfv%U = UXE(Y, yg): B.

Remavk. Similarly,
a(W) = (W - K(pgW), peW) (W € E(Y, yo)),
B(W, y) = W +K(y) (W e Q(Y, yo)),

for a fiber-homotopy equivalence between Q(Y, yg) X U and pl‘gl U. Both fiber-
homotopy equivalences are equivalent to crossections in the fibrations p Ml pi/% U and
Pr pﬁl U, respectively, and the suitable homotopies form paths in the corresponding
space of crossections. Therefore in the case of pr the maps @ and B are compat-
ible with the action of Q(Y, yg); for example, the diagram

1xB -
Q(Y, yo) X Y, yo) X U —= Q(Y, yo) X pii U

1u-><1U g 1 PE
Q(Y, y) XU — pilU

is commutative.

3. THE THEOREMS

Definition 1. For a given based space (Y, yg), a loop-fibration. is a quintuple
(E, p, X, f, Y), where X is a topological space, f: X — Y is a map, and (E, p, X) is
the fiber space induced by f from (E(Y, ygy), pg, Y). In general, we shall use the
notation (Eg, p, X).

In order to get a category of loop fibrations with respect to (Y, yg), let us look
for fiber maps that are compatible with the action of Q(Y, yg) on the loop fibrations.
Restricted to a fiber, such a fiber map is simply a map from one fiber of E(Y, yg),

say p;:I (y 1), to another fiber of E(Y, yq), say pﬁl (v,), since we consider only in-
duced fibrations. A path from y; to y;, that is, any element of pl‘v}(yl ), provides
such a map: the compatibility with the loop action is automatic.

We shall use (MY, ppy, Y) as a “universal” functional fibration. For any two
loop fibrations with respect to (Y, yo), say (E¢, p1, X1) and (Eg, pz, X2), we define
a functional fibration (Mf, o X;) as follows. Let

MY = {W| w(r) € g(Xp)} (W = (w, r) € MY);
then
Mg, = {(W, x)| We Mg¥, x € X),and pyW = £(x)};

that is, (M ., P, X,) is induced by f from (M,Y, Pl MY, Y).

Definition 2. A fiber map k: Ef — Eg (inducing k: X — X5) is a loop-fiber map
if there exists a crossection o: X; — My (o (x) = (S(x), x)) such that
k(W, x) = (W + S(x), k(x)) (W, x) € Eg).

Definition 3. Two loop fibrations with the same base space are equivalent, if
they are fiber-homotopy equivalent through loop-fiber maps.



286 MARTIN FUCHS

We notice that if U C Y is contractible to yg, then pE1 U and Q(Y, yg) XU are
equivalent as loop fibrations. We may consider

(pz' U, pg | P! U, U)  as induced by i: UC Y
and
(Q(Y, yo) X U, pr,, U) as induced by i,: U — y, € Y.

The equivalence of these two loop fibrations is due to the fact that i; and i, are
homotopic:

THEOREM 1. If £, g: X — Y arve homotopic maps, then (Ef, p, X) and
(Eg , p, X) are equivalent as loop fibvations.

Proof. Let k: X x Rt — Y be such that k(x, 0) = f(x) and k(x, t) = g(x) for t> 1.
Then K(x) = (k(x, t), 1) defines a map from X into M,Y. Let

a(W, x) = (W+K(x), x) for (W, x) e E,
BW, x) = (W -K(x), x) for (W, x)e Eg;

-clearly, @ and B8 form an equivalence of loop fibrations.

We now assume that Y admits a numerable covering % of open, contractible
sets.

THEOREM 2. If (E;, p, X) and (E , P, X) are equivalent loop fibrations with
respect to (Y, yg), then f and g ave homotopzc

Theorems 1 and 2 together form our classification theorem.

Proof (due to D. Puppe). An equivalence between (Eg, p, X) and (Eg, p, X) is

given by a crossection o: X — Mf’g and a fiber map k: Ef — Eg
o proj

If S denotes the composition X — Mg, € MY XX — MY, then we require
that k(W, x) = (W + 8(x), x). Associated with S: X — MY we have the mapping
8 X xR — Y, which can be extended to X x Rt (R* is the one-point compactifica-
tion of RT; since for each x € X, §(x): R* — Y is constant for large t € RY, the ex-
tension is contmuous because {(x t) l t > r(x)} is closed). 8(x, 0) = £(x),
8(x, ©) = g(x), and so f and g are homotopic.

Theorem 2 can also be proved by the methods of A. Dold (see [1]). I think this
proof is of independent interest. We have to assume that Y admits a numerable
covering % of open sets that are contractible in Y. We first establish the following
property of loop fibvations: Let (Ef, p, X) be a loop fibration with respect to
(Y, yo), and let A C X be a set that admits a halo H (see [1]) in X. If
ka: p-l A — E(Y, yo) is a loop-fiber map that can be extended as a loop-fiber map
to p"1 H, then it can be extended to E; (as a loop-fiber map, of course).

Proof. (E(Y, yo), Pr, Y) is induced from (E(Y, yg), pg, Y) by 1y. The func-
tional fibration (Mf’lY , Pg, X) (Mg, pg, X) for short) is therefore induced from

(MY, pps, Y) by the map f: X — Y.

The loop-fiber map k corresponds to a crossection o ao: A — pf’l A that can be
extended to oyy: H — pf’l H in such a way that k(W, x) = W + Syg(x) extends kjy .

Note that o y(x) = (Sy(x), x), where Sy(x) € MY.
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Let @l be a numerable covering of Y by open, contractible sets; then, by Lem-
ma 2, pM U is fiber-homotopy equivalent to U X E(Y, yg) for each U € 02/ The
family 7 = {f-!U| U e #} is an open, numerable covering of X such that

‘1 (£-1 U) is fiber-homotopy equivalent to -1 U x E(Y, ¥o)- Since E(Y, yg) is con-
tractible, g 5o can be extended to 0: X — Mg, according to [1, Corollary 2.8, p. 229].
If o(x) = (S(x), x), then k(W, x) = W + S(x) is an extension of k, .

Second proof of Theorem 2. Assume (Eg, p, X) and (Eg, p, X) are equivalent
as loop fibrations. Let a: E; & E,: 8 be equivalences. Consider
(Bf X I, pXx 1;, X XI). Thisisa loop fibration, induced by h: X XI — Y, h(x, t) = f(x)
forall te I Let A=Xx1I and LY EfXI-—> E(Y yo) be defined as

ka(W,x,0) =W and kW, x 1) =G -aW,x),
where G: E; — E(Y, yo) is the loop fiber map induced by g. Since XX I admits a
halo in X X I say H=Xx[0, 1/2) U X X (1/2, 1], and since k, can be extended to
(px1 ) lH k A can be extended to X X I, thus inducing a homotopy between f and g.
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