EXAMPLES OF GENERALIZED-MANIFOLD APPROACHES
TO TOPOLOGICAL MANIFOLDS

Kyung Whan Kwun

Dedicated to R, L, Wilder on his seventieth birthday.

INTRODUCTION

The theory of generalized manifolds and the study of topological manifolds have
no doubt influenced each other in methods and motivations. Of course, the theory of
topological manifolds has its own approaches, and the extent to which we can apply
the theory of generalized manifolds is necessarily limited. At times, however, the
latter theory may offer a better picture of the problem involved, and it may even
play an essential role. I hope to illustrate this point with a few simple examples.

1. SEPARABLE 1- AND 2-gms

One of the most useful aspects of gms in connection with topological manifolds
is the fact that 1- and 2-gms that are separable are actual manifolds [8, Chapter 9].
This is not the case for dimensions greater than 2. In fact, the monotone mapping
theorem {9], [10] of Wilder opened a convenient way of constructing gms that are not
manifolds, for dimensions exceeding 2. In order to show that a given space be a 2-
manifold, it therefore suffices to prove that it is a 2-gm. To give an example of this
approach, we recall the following famous theorem of R. L. Moore.

If G is an upper-semicontinuous decomposition of the plane into continua that do
not sepavate the plane, then the decomposition space is homeomovphic to the plane.

This theorem is an immediate corollary of the monotone mapping theorem of
Wilder that I have already mentioned. I point out that despite appearances to the
contrary, theorems on generalized manifolds sometimes have significant implica-
tions concerning manifolds.

2. HANDLING OF BOUNDARIES

By this time, it is well known that a cartesian factor of a manifold need not be a
manifold (see [1]). Suppose A and B are spaces, and suppose one wishes to show
that A X B is a manifold with nonempty boundary. It is often necessary to consider
separately the candidate for Bd (A X B) and that for Int(A X B). This means that one
has to analyze Int(A X B) in terms of A and B. Since A and B need not be mani-
folds, this may pose a difficulty. The most natural way to take care of this is to re-
gard A X B as a gm and to use the formula Bd(AX B)=Bd A X B U A X Bd B.

Here Bd is taken in the sense of gms, and this is possible because by the factoriza-
tion theorem [6] of Raymond A and B are gms.
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Consider the following example Let S be a 2-sphere embedded (not necessarlly
tamely) in the 3-sphere S3. Let U be a complementary domain of S in S3. Then
U=UUS.

Though many interesting spaces that are not manifolds are still factors of mani-
folds, in this particular case U cannot be a factor of a manifold unless it is already
a mam;fold To see this, suppose for some space B that UXB is a manifold, and let
peBdU=S and q € B. Then (p, q) € Bd(U x B), and since U X B is a genuine
manifold, Int (U X B) is 1-LC (locally simply connected) at (p, q). Hence Int U=1U
is 1-LC at p. According to a result of Bing [2, corollary to Theorem 2, p. 300], this
means that S is tame and U is a 3-cell. (This observation may be stated in a more
general form; see Remark 1 at the end of this text.)

3. SUSPENDING HOMOLOGY SPHERES

One of the easiest ways of going beyond the class of topological manifolds and yet
staying in the class of gms is to take the suspension of a closed manifold that is a
homology sphere. Even when one is not primarily interested in the suspension itself,
this construction sometimes facilitates the proof. For example, consider the follow-
ing proposition, which came to light during a conversation with M. Brown, W. Brow-
der, and D. Epstein.

PROPOSITION. An n-manifold X is compact and contractible if and only if it is
connected and its boundayy B is a homology spheve such that the inclusion B C X is
tnessential.

We prove only the sufficiency. Our proof is based on an observation by Epstein.
Let CB be the cone over B, and form an n-gm CB U X by attaching CB and X
along B. We denote by SB the suspension of B, and we construct a map
f: SB — CB U X as follows. Since the inclusion B C X is inessential, we may choose
f so that it maps the upper cone of SB onto CB by the identity and the lower cone of
SB into X. Now both SB and CB U X are gms. The behavior of f on the upper cone
ensures that the cohomology degree of f is 1 (or - 1) over the integers. More pre-
cisely, let U be an open connected subset of the open upper cone of SB, and consider
the commutative diagram

n £ _.n
HY(U) ¢ HYU)
~ | i* li*
H (SB) (CB U X).

The right-side i* is nontrivial. Since this is true over integer- or 7, -coefficients,
CB U X is orientable and compact. It follows that the lower f* is an isomorphism.
Using the fact that Poincaré duality is induced by capping with the orientation class,
we deduce without difficulty that CB U X is a homology n-sphere, in other words,
that after deletion of CB, X is homologically trivial. To see that 7;X =1, let

p: M — CB U X be the unlversal covering, and let . SB— M be a lifting of f, as is
indicated in the diagram
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M
T
| p
£
SB CBUX.

Let q be the vertex of the upper cone of SB (we note that q is also the vertex of
CB in CB U X). Since deg £ # 0, it follows that deg f+0. Hence M is compact and
f is onto. Thus f(q) = p~!(q). Thus p is a trivial covering, and therefore
71(CB U X) is trivial. Since the inclusion B C X is inessential, Van Kampen’s
theorem implies that 73 X = 1. (The hypothesis that B be a homology sphere is not
necessary. For a stronger result, see Remark 2 in Section 5.)

4. SHRINKING A MANIFOLD

The fourth and final example is of an obvious kind. Namely, we apply a known
result in generalized manifolds to a problem on topological manifolds.

Consider the following question: What closed manifolds A can be embedded (not
necessarily locally nicely) in a higher-dimensional manifold M in such a way that
the space M/A obtained from M by shrinking A to a point is again a manifold? As
P. Doyle has pointed out, we may suppose that M/A is an n-sphere.

Using a theorem due to Raymond and myself [5, Theorem 3 (2)], J. Hocking and I
have been able to show that the Z,-cohomology ring H*(A; Z,) of A must be a
truncated polynomial ring generated by a single element of degree p > 0. A result
[7, Theorem 4.5] of Steenrod and Adams implies that p = 1, 2, 4, or 8. In particular,
the n-sphere can be shrunk as indicated in the question if and only if n=1, 2, 4, or 8,
and no nontrivial product of manifolds can be so shrunk. A purely topological proof
that (for example) a torus cannot be shrunk in this way might be very difficult. For
the details, see [4].

5. REMARKS

I add some remarks that were not a part of my talk.

1. The example U of Section 2 can be stated in a more general form. One need
only assume that a 2-manifold M is embedded in a 3-manifold as a closed subset and
that M has two complementary domains. U can be either of the two complementary
domains. The result is that U is a manifold if and only if U X B is a manifold for
some space B.

2. After my talk, Morton Brown expressed his belief that the homology sphere
assumption in the proposition of Section 3 is not needed, and that the mere assump-
tion that the boundary of X be nonempty and compact should suffice. I shall show
that this is indeed the case. Since nothing is new for n <2, we may assume n > 3,

Since the inclusion B C X is inessential, the sequences
0 — HY"}(B) » HYX, B) —» HYX) — 0,
0 - Hq(X) — Hq(X, B) — Hq_l(B) — 0

are exact for all q > 1 over any abelian group. In particular,
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0 + H*U(B; 2,) ~ HY(X, B; ,) ~ H(X; Z5)
(here Hj denotes the Oth Borel-Moore homology group [3]). Since X is connected,

this implies that X is compact and B is connected.

Letting q = n over Z, we see that X and B are both orientable or both non-
orientable.

Case 1. X and B are orientable. The exactness of the sequence
0 — H;(X) — H(X, B) = Hy(B) > Hy(X)
implies that H;(X) ~ H;(X, B), and by Poincaré duality,
H"1(X, B) ~ H*"}(X) and H®"%(B) = 0.

Hence H;(B) =0
Suppose it has been proved that H;(B) =0 for all i (1 <i<k<n -1). Then

0 - H(X) — H(X,B) - 0 and H'KEX, B)=H"KX),

and therefore H*-%-1(B) = 0 and finally Hy (B) =

Note that in concluding the triviality of some H;(B), we use implicitly the com-
mutative diagram

H(X, B) — H(X)
l l
Hn_i(X) — Hn_i(X, B),

where the vertical homomorphisms are Poincaré duality isomorphisms and the hori-
zontal homomorphisms are induced by the inclusion. Thus B is a homology sphere,
and by the proposition in Section 3, X is contractible.

Case 2, X and B are not orientable. Let p: X — X be the 2-sheeted orientable
covering. B = p-1(B) is connected, since B is not orientable. Since p induces
monomorphisms for homotopy groups of positive dimensions, the homomorphisms
s (B) — 'nl(X) are trivial for all i > 1. Hence the inclusion B C X is inessential, and
by Case 1, X is contractible and has the fixed-point property. On the other hand,
since p is 2-sheeted, there exists a fixed-point-free involution. This contradiction
rules out Case 2.
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