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1. INTRODUCTION

Let S be a closed (that is, compact and boundaryless) 2-manifold topologically
embedded in a two-sided manner in Int M, where M is a piecewise linear 3-mani-
fold. The main result in this paper (Theorem 2) is that, arbitrarily close to S, there
exists a polyhedral neighborhood of S, homeomorphic to S X [0, 1] with finitely many
“small” handles of index 1 attached. In particular, if S is orientable, some neigh-
borhood of S is embeddable in Euclidean 3-dimensional space E3. In this sense, we
can study many pathological embeddings in 3-manifolds without leaving E3.

These results continue the line of investigation begun in [15] (see [16] for a sur-
vey of the results to be found in both papers), and we rely on some of that work, as
well as on many of R. H. Bing’s theorems (references [2] to [9]). We are also in-
debted to Professor Bing for many helpful discussions on these topics.

Using the above notation, and assuming that M - S has components Ugp and Uj,
we say that S is locally tame from Ug at p € S if the closure of Ug is a topological
3-manifold at p. If the closure of Uy is a 3-manifold, we say that S is fame from
U,. The term “manifold” will always refer to a connected set. When we wish to
emphasize that a manifold possesses a combinatorial triangulation, we shall use the
prefix “piecewise linear” (abbreviated: pwl), even though each topological manifold
of dimension 3 or less is known to be a piecewise linear manifold. By a cube-with-
handles, we mean a 3-manifold homeomorphic to the regular neighborhood in E3 of
a finite, connected graph. In considering a mapping f: X X [0, 1] — Y, we shall some-
times use the notation f;: X — Y (t € [0, 1]) to mean the mapping defined by
f,(x) = f(x, t). Similar notation will refer to an f with domain X X [-1, 1].

By a null-sequence E}, E,, --- of subsets of a metric space we mean a sequence
such that the diameters of its elements converge to zero. Let S be a closed 2-mani-
fold topologically embedded in Int M, where M is a piecewise linear 3-manifold.

Let X C S be a closed set, and let Uy, Uy, -+ be the components of S - X. We
shall call X an S-curve if U;, U,, --- is a null-sequence of mutually exclusive 2-

cells with Ui U; dense in S. In case S is a 2-sphere, such an X is called a Sier-
pinski curve (see [5, Section 3]). We call

S—Uﬁicx

1

the inaccessible part of X. We shall say that an S-curve X is fame in M if for
each 2-manifold J that is homeomorphic to S, contains X, and is locally tame at
each point of J - X, it follows that J is tame in M. If S is a 2-sphere, then a
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Sierpinski curve X C S is tame by this definition if and only if it is tame by Bing’s
definition (see [8], for example).

2. SURFACES TAME FROM ONE SIDE

Theorem 1 below implies Theorem 2 in case the 2-manifold under consideration
is tame from one of its complementary domains (although Theorem 1 says more
than that). We first state a result from [15].

LEMMA 0. Let B be a q-cell (q =1, 2, or 3) topologically embedded in Int M,
wheve M is a piecewise linear 3-manifold, and let D C 0B be a (q - 1)-cell. Let
Ay, Ay, -+, Ay De a finite disjoint collection of tame arcs in M - D with
0A; CM - B jor each i. Then theve exists a compact set C C B - D such that, for
each € > 0, there is a piecewise linear homeomovphism h: M — M, equal to the
identity outside the ¢-neighborhood of C, and with each h(A;) contained in M - B.

Except for the assertion that h can be chosen to be pwl (which follows from [2;
Theorem 3]), Lemma 0 is simply Corollary 1.2 of [15].

LEMMA 1. Let S be a closed, piecewise linear 2-manifold. Then, for each
e >0, there is a 0 > 0 such that if each of Dy, Dy, ***, Dy, is a finite, disjoint
collection of closed 2-cells in 8 with the elements of D; disjoint from those of D;
for i #j and with the union of the elements of each D;i having diameter less than 0,
then there exist disjoint, closed 2-cells ¥y, Fp, -+, Fp in S, each having diameter
less than €, and such that all the elements of Di are contained in the intevior of F;
(i = 1’ 2’ ...7 p)'

Proof. We shall assume that S is a geometric complex, rectilinearly embedded,
with respect to a triangulation T*, in some Euclidean space. Since there exists a
uniformly continuous homeomorphism between any two metrized copies of S, the
conclusion will follow in general.

Let T (a subdivision of T*) be a triangulation of S such that the star of each
vertex of T has diameter less than £/7, and let T' and T" denote the first and
second barycentric subdivisions of T, respectively. If s € T, we shall denote the
barycenter (in T') of s by b(s), the closed star of b(s) in T" by B(s), and the open
star of B(s) in T" by OB(s). Note that B(s) is a closed 2-cell, OB(s) is an open
2-cell containing B(s), and {B(s)l s € T} is a covering of S. We choose & > 0 to
be less than half the minimum distance from any set B(s) to the complement of
OB(s) in S.

Now let Dy, Dy, **-, Dp have the properties stated in the lemma, and let

A={D|DeD;, 1 <1i<p}

(this is a disjoint collection of 2-cells). Let us say that Dy is of fype j
(j =0, 1, or 2) if j is the largest integer for which there exists a j-simplex s € T
with B(s) meeting an element of Dy . If Dy is of type j, then each element of Dy is

also said to be of type j. Clearly, if D is of type j, then U {D| D € D} < OB(s),
for some unique j-simplex s.

Now if s and t are distinct j-simplexes of T, then OB(s) N OB(t) = 0. Further,
if s € T is a j-simplex, and if each of E and F is an element of A each of whose
points is nearer to B(s) than to S - OB(s), then some arc from E to F in OB(s)
meets no elements of A other than E and F. It follows that for j =0, 1, 2, there
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exists a disjoint collection of closed 2-cells Hi , sz, e 5¢ (where m(j) is the

m
number of 2-cells Dy of type j, and where m(0) + m(1) + m(Z()J) p) with the follow-
ing three properties: no HJ intersects an element of A of type different from j;
each HJ lies in OB(s) for some j-simplex s (and hence HJ has diameter less than
e/17); and each HJ contains all the elements of exactly one D of type j. Of course,

it may happen that HJ NHK #0 for j #k.

Define F; H2 for i < m(2). Since each of these F; contains a point not in any
H1 (in fact, a point in an element of A of type 2), there exists a homeomorph1sm

f,: S — S, equal to the identity outside a small neighborhood of U i= 1 Fl, and such
that
m(2)

1
hyn =
f, (H]) H F;

for each j. This neighborhood meets no element of A of type 0 or 1, and each
component of the neighborhood has diameter less than €/7. Now put

F, = f{(H}) for m(2) < i < m(1)+m(2).

1

Note that each of these new F; has diameter less than 3¢/7 and that each F; thus
far defined contains all the elements of exactly one Dy of type 1 or 2.

We use the same procedure to obtain the rest of the F;. That is, there exists a
homeomorphism f,: S — S, equal to the identity outside a small neighborhood of

Uf‘:(ll)m(z) F,, such that
m(1)+m(2)

fO(H?) n U F. =0
i=]

for each j. This neighborhood meets no element of A of type 0, and each of its com-
ponents has diameter less than 3g/7. Finally, put

F, = f,(H)) for m(1) +m(2) < i < p.

Note that each of these new F; has diameter less than ¢ and that each of the F; we
have defined contains all the elements of exactly one Dy. This completes the proof.

The following is a modification of a result of Bing [8, Theorem 1.1].

LEMMA 2. Let S be a closed, piecewise linear 2-manifold, M a piecewise
linear 3-manifold, and h: S — Int M a homeomovrphism such that M - h(S) has com-
ponents U _y and Uy, with h(S) tame from the U_)-side. Then, for each positive
number €, some piecewise linear homeomorphism H: S X [-1, 1] - M has the fol-
lowing four properties:

(1) for each x € S and each t € [-1, 1] the distance from h(x) to H(x, t) is
less than ¢;

(2) H_I(S) cU_y;

(3) U_ 1 N H,(8) is covevred by the interiors of a finite disjoint collection of 2-
cells in HI(S)’ each of diameter less than ¢;
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__ (4) there exists a finite disjoint collection of topological 3-cells Cy, *-, Cy in
U _; such that each Cj has diameter less than € and meets h(S) precisely in a 2-
cell, such that h(S) - H(S X (-1, 1)) is covered by the inteviors of these 2-cells, and
such that (9 C;) - Int(C; N h{S)) € H(S X (-1, 1)).

Proof. Let 6 be a positive number such that, for each homeomorphism
g: S — M differing from h by less than &, and for each compact set Z in g(S)
whose components all have diameter less than 6, the image of g contains a finite
disjoint collection of 2-cells of diameter less than ¢ whose interiors cover Z (see,
for example, the proof of [6, Theorem 12]). By [8, Theorem 6.1] there exists a tame
h(S)-curve such that each component of h(S) - X has diameter less than 6. Since
h(S) is tame from the U_)-side, we may deform h| S - X slightly into U_;, to ob-
tain a homeomorphism g: S — U_;, differing from h by less than &, such that
g(s) N h(8) = X, the 2-manifold g(S) is locally tame at each point of g(S) - X, and
the closures of the components of U_; - g(S) that meet h(S) form a null sequence of
3-cells Cy, C,, --+, each of diameter less than 4.

Now, g(S) is tame, and since it is 2-sided, there exists a homeomorphism
G: Sx[-1, 1] = M, with G = g, and having properties (1) and (2) of the lemma (re-
stated for G). Since the C; form a null-sequence, there exists an integer k such
that C; C G(S x (-1, 1)) for i > k. Clearly, G has property (4) (restated for G),
with respect to Cy, :--, Cx. By our choice of 6, G has property (3) (restated for
G). Finally, we replace G by a sufficiently close pwl approximation [2, Theorem
2'] to obtain the required H.

THEOREM 1. Let M be a piecewise linear 3-manifold, and K a compact piece-
wise linear 3-manifold with nonempty boundary, topologically embedded in Int M.
Then, for each € > 0, theve exists a polyhedral subset L. of M in the e-neighbor-
hood of K, homeomorphic to K, with o L homeomovrphically within € of 9K, and
such that theve exists a finite disjoint collection Hy, H,, ---, H,, of polyhedral
cubes-with-handles in M, each H; having diameter less than €, each H ; meeting L
precisely in a 2-cell, and with

Kcht[LUH UH, U UH,.
Proof. Let S be a finite complex and h a homeomorphism of S onto 9 K. Let
N be a product neighborhood of 9K in K, and let U_; =Int K, U; =M - K. We
choose a 6 > 0 to satisfy the following two conditions.

(1) If g is any homeomorphism of S into M differing from h by less than 6,
and if g(8) C U_;, then g(S) separates the closure of K - N from the closure of
U,.

(2) If g is any homeomorphism of S into M differing from h by less than 4,
and if each of D, ---, D, is a finite, disjoint collection of closed 2-cells in g(S)
with the elements of D; disjoint from those of D j for i #]j and with the union of the
elements of each D; having diameter less than 6, then there are disjoint closed 2-
cells Fy, ---, F, in g(S), each of diameter less than £/2, and such that all the ele-
ments of D; are contained in the interior of F;, for each i. In particular, 6 < e/2.

(That condition (2) can be met for some 6 > 0 follows easily from Lemma 1.)

Since each component of h(S) is 2-sided, repeated applications of Lemma 2 give
a pwl homeomorphism H: S X [-1, 1] — M satisfying conditions (1) to (4) of that
lemma for the positive number /3. By our choice of 6, H_;(S) separates the
closure of K - N from the closure of U; . By [10; Theorem 1], the closure of each
component of N - H_;(8) is homeomorphic to §x [0, 1]. Hence, if we let L, be the
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closure of the component of K - H_;(S) not meeting 9K, and if we write
L; =Lyu H(Sx[-1, 1}),

then some homeomorphism of K onto L; is the identity on Ly. Note also that the
only points of K not in Int L; are contained in the 3-cells C;, -+, Cy (provided by
Lemma 2). We assume that no C; lies in Int L .

Let Ry, ***, R be a disjoint collection of compact, polyhedral, orientable 3-
manifolds with boundary, each R; having diameter less than 6 /3, with C; C Int R;,
and with @ R; in general position w1th respect to 0 L} = 1(S) We also suppose, by

condition (3) in Lemma 2, that each R; is so close to C; that H;(S) N lJRJ is cov-
ered by the interiors of a finite, d1s101nt collection of 2-cells in H,(S), each of di-
ameter less than 6/3. Let Ty, - T be the closures of the components of

[ UR ] L; . Each T; is a compact, polyhedral orientable 3-manifold with bound-
ary, and each component of T;NL;=(T;)N (@L;) is a punctured 2-cell.

For each i, let a disjoint collection Z; of polygonal arcs in T; be selected such
that for each A € Z;, (i) either

ACL; with 9AC9(T; NL,)
or

ANL, =0 with ANJ3T; =24,

and (ii) T; minus a thin tubular neighborhood in T; of each A € Z; is a cube-with-
handles Y; meeting L; in a finite disjoint collection of polyhedral 2-cells in

(2Y;) N (3 L,). The existence of such arcs follows from [15, Lemma 1} and the fact
that each component of T; N L; is a punctured 2-cell.

Now apply Lemma 0 once for each Cj, and piece together the resulting homeo-
morphisms. That is, in Lemma 0, for fixed j, take

q=3, B=Cj, D=02C;-Int(C;naK), M=1L;uUm,

and take the £ of Lemma 0 so small that the corresponding &-neighborhoods of the
compact subsets of the C have diameter less than /3, and are disjoint from each

other, from 9 (L U UT ;), and from the closure of K - U C This gives a pwl

homeomorphism G of Lj U U T; onto itself that is the 1dent1ty on o (Ll U U T )
moves each point less than 6/3, and satisfies the condition G(A) N K =[O for each
A in each Z;.

Note that the diameter of each G(T;) is less than 6 < ¢/2, and that GH,; differs
from h by less than 26/3. Let L = G(L;), and let W; be G(T;) minus a thin, nice
neighborhood in G(T;) of each G(A) (A in some Z;). Then each W; is a polyhedral
cube-with-handles, each component of W; N L is a 2-cell in the common boundary
of Wy and L, and K C Int[L U W, U -« UW,].

Since each set W; N L has diameter less than 6 and lies in GH;(S) =3 L, re-
quirement (2) on 6 implies that there exist disjoint polyhedral closed 2-cells
Fy, .-, Fpin 9 L, each of diameter less than £/2, such that W; N L C Int F; for
each i. The required cube-with-handles H; is then W; plus a polyhedral 3-cell
obtained by thickening F; slightly in L.
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3. THE GENERAL CASE

LEMMA 3. Let M be a piecewise linear 3-manifold, and let S be a closed,
piecewise lineay 2-manifold topologically embedded in Int M, and separating M.
Suppose that S is a velvact of M. Then, for each € > 0 there exist an open set
UCM anda 6 > 0 such that S C U, and such that if Sqo is any lame 2-manifold
homeomovrphically within & of S, then Sy sepavates M, and some vetvaction of M
onto S, moves each point of U less than €.

Proof. Let r: M — S be a retraction. First, we require p >0 to be less than
€/2 and so small that each mapping of S into M that moves each point less than p
is homotopic in M to the inclusion S — M. This ensures that each 2-manifold Sg
homeomorphically within p of S separates M. We also require that p be so small
that if Sy is homeomorphically within 2p of S, then each mapping of Sy into itself
that moves each point less than 2p is g£/4-homotopic (in Sg) to the identity. In
other words, we require that for some homotopy H;: Sy — Sy (in which Hj is the
identity and H; coincides with the mapping in question), each path

{H,x)| t € [0, 1]}

has diameter less than £/4. Choose U so that S C U and so that r moves each
point of U less than p/4. Finally, take a positive 6 less than p and less than the
distance from S to M - U.

Now suppose that S; is tame and that some homeomorphism h of Sy onto S
moves each point less than 6. Let G be one of the components of M - Sg. It suf-
fices to demonstrate a retraction ry of G onto Sy that moves each point of UN G

less than €.

Let N be a product neighborhood of Sg in U N G (that is, let there exist a
homeomorphism g: Sy X [0, 1] = N C U N G such that g(x, 0) = x, for each x € Sg)
with each arc {g(x, t)| t € [0, 1]} of diameter less than 6/4. Let S; = g(Sg X { iO}),
and let p;: N — S; be the “projection” defined by p; g(x, t) = g(x, i) for i =0, 1.

Note that S; is homeomorphically within 56 /4 of S and that under
o h-1r: S, — S;, each point of S; moves less than 3p/2. This implies that some
£/4-homotopy on S; with the properties described in the first paragraph of this
proof satisfies the condition H; = p; h-lr. Define ro by the rule

h-1lr(y) if ye G-N,
ro(Y) =
pp Hipy(y) ify = glx, t) € N,

We see that ry moves points of (U N G) - N less than 5p/4 < 5&/8, and points of N
less than g/2. This completes the proof.

THEOREM 2. Let M be a piecewise linear 3-manifold, and let S be a closed
piecewise linear 2-manifold topologically embedded in Int M, and separating M, and
let £ > 0. Then, for some polyhedval subset L of M in the e-neighbovhood of S
such that L is homeomorphic to S X [0, 1] and such that each component of 8 L is
homeomoyphically within € of S, theve is a finite disjoint collection H,, Hp, *--, Hy
of polyhedral cubes-with-handles in M, such that each H; has diameter less than ¢,
each H; meets L preciselyin a 2-cell in (3H;) N (0 L), and

S € Int[L UH; UH, U -+ UHy).
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Proof. Let M - S have components Uy and Uj;, and let M* be the subspace of
M X [0, 1] consisting of all (x, t) for which

xe€Ujandt=0, orxeSandte[0,1], or xe U; and t = 1.

It follows from [3, Theorem 5] and either [11] or [13] that M* is a topological
3-manifold and hence has a piecewise linear triangulation T#. Let f be the mapping
of M* onto M given by projection onto the M-coordinate.

If M has metric d, we assign to M* the metric d*, where

da*[(xy, t1), (x,, t,)] = Vd(x, x,)2+ (t; - t,)2.

We note for later use that if X is any subset of M* with finite diameter, then f(X)
also has finite diameter, and diam f(X) < diam X. Note that f | U; X {i } is an
isometry onto Ul, for i =0, 1, and that for x € S, £~ l(x) is an arc By [15, Corol-
lary 1.3], some nelghborhood in M* of each f- 1(x) is embeddable in E3, and hence,
as in [14 Lemma 6], each set f-1(x) is cellular in M*,

Now let € > 0. Let A and B be compact polyhedral 3-manifolds with nonempty
boundary such that

ScmtBCBCIntAcCAcCM,

A retracts onto S, and there is a strong deformation retraction (in A) of B onto S.
Let 6 > 0 be such that the 6 -neighborhood of S in M lies in B and each subset of
B of diameter less than 6 lies in a closed polyhedral 3-cell of diameter less than
£/2 in B. Let u > 0 be such that each subset of S of diameter less than p lies in
an open 2-cell in S of diameter less than 6/8.

The space M* contains subsets L* H’I< H H* , that are polyhedral with re-

spect to T# and satisfying the conclus1on of Theorem 1 w1th respect to the 3 -mani-
fold K* =8 x [0, 1] € M* and the positive number pu. Let R* = L* U HY¥ U - U H’I‘;

so that K* C Int R*. We assume that p is small enough so that we may speak mean-
ingfully of a unique component of 3 L* (or 8 R*) as being associated with each com-
ponent of 3 K*,

By our previous assertions about the sets f-1(x) and by [1, Corollary 1],
R = f(R*) is homeomorphic to R*; by [2; Theorem 9], 3 R (and hence R) is tame.
By applying a theorem of Moise (quoted in [2] as Theorem 2) to R and using [12,
Corollary 3] to alter T# slightly near o R we may assume that a neighborhood of
9 R* is polyhedral under a triangulation T* of M* and that 8 R = f(o R*) is poly-
hedral relative to the given triangulation of M.

Note that R lies in the u,—ne1ghborhood (p < 6/8 <e/16) of S and contains S
in its interior, and that each set f(H ) has diameter less than p. Further, since
0 L* is homeomorphically within p of 3 K*, there exists, for each component C* of
9 L*, a mapping of S = f(K*) onto f(C*) that has a well- deflned inverse on
f(C*) N @ R and moves each point of S less than u.

We claim that each polyhedral, closed 2-manifold Z in R of diameter less than
8 bounds a 3-manifold in R, of diameter less than £/2, such that this 3-manifold
can be piecewise linearly embedded in E3 . Indeed, it certainly bounds such a 3-
manifold in B. Moreover, the 3-manifold is contractible to a point in B. If the
3-manifold does not lie in R, then Z must separate in R the two components of
o R. Hence, some closed, polyhedral 2-manifold W C 9 R, considered as a 2-cycle
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(with Z, coefficients), bounds in A but not in R (in fact, it is the generator of
H,(R)). This is a contradiction, since the image of H,(R) in H,(A) under the inclu-
sion homomorphism is the same as the image of H,(S) in H,(A) under the inclusion
homomorphism, and the latter homomorphism has trivial kernel.

Consider the 2-cell Df = Hf N L*. Our main task is to show that each of the
polyhedral simple closed curves f(d D’f) bounds a polyhedral 2-cell D; C R, of di-
ameter less than 6/2, such that

D; N9 R = 2 D; for each i and D-ﬂDJ-=Dfori¢j.

1

Let p be a positive number, small enough so that
[max diam f(H})] +2p < u,

less than one-fourth of the least of the distances between 2-cells D¥ and D* (i #3j),
and less than the distance between K* and 9 R*.

In the paragraphs to follow, the D; will be constructed for those values of i for
which D* belongs to the component of 3 L* associated with $* =8 x {0} c a K*.
The phrase “for each i” should be interpreted accordingly, until this part of the
proof is completed. The construction of the remaining D; will be symmetric.

According to [8, Theorem 6.1], there exists a tame S-curve X such that if
E,, E,, --- are the disjoint 2-cells that are the closures of the components of
S - X, then diam §* N £-1(E;) <p. Let E] = $* N £-1(E;). We also note from the
proof of Theorem 6.1 of [8] that we can choose a tame 2 manifold J that contains X
and is homeomorphically as close to S as we wish.

We claim that X* = §* N £-1(X) also lies in a tame 2-manifold J* C M* that can
be chosen homeomorphically as close to S* as desired. To obtain J*, we simply
replace each E* by a 2-cell that has the same boundary, is locally tame at each of
its interior pomts has its interior in Int K*, and is homeomorphically close to E*
If this construction is performed nicely, then J* is clearly tame from one compo—
nent of M* - J*, each arc f-1(x) (x € S) meets J* in exactly one point, and J* is
locally tame from the other component at each point of J * - X*. It will also be con-
venient later if the closures of the components of K* - J* that meet S* form a null-
sequence of topological 3-cells of diameter less than p. We leave to the reader the
details of the proof (it uses the fact that f(X*) = X is tame) that the latter component
of M* - J* is locally simply connected at each point of X* (see [7, Theorem 8.1]).
This implies [3, Theorem 6] that J* is tame in M*.

By the methods of Bing [9, Theorem 1], we can deduce from these facts that
there exists a homeomorphism h: M* — M* such that, for each i, h(D}) N X* is the

union of a finite number of mutually exclusive simple closed curves, each in the in-
accessible part of X*, such that X* locally lies on different sides of h(D’i") near

these curves, h is the identity outside the p-neighborhood of s* N U D’i" ,and h
moves each point less than p. Further, Bing’s proof shows that h can be chosen so
that h(D¥) N J* lies in the inaccessible part of X*, for each i, where J* is the
tame 2-manifold described in the preceding paragraph and is homeomorphically
within p of S*. Note that, for each i, §* N h(Df) consists of the above simple
closed curves plus the null sequence {h(D*) 0 Int E*| j=1,2, -} .of compact
sets of diameter less than p. Further, for i #k, the sets h(D*) and h(D ) are dis-
joint and no 2-cell E"< meets both h(D*) and h(D ). Also, ah(D*) =9 D¥, and
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diam fh(D}) < [max diam f(HY)]+2p < p.

We call a simple closed curve in (h | D*) WX*) a maximal curve if no other
simple closed curve in (h | D¥)-1(X*) separates it from 8 D¥. A maximal 2-cell in

DY is the 2-cell in Df bounded by a maximal curve. Clearly the maximal 2-cells of
D’i" are disjoint, and we let V’i" denote the punctured 2-cell obtained by removing
their interiors from D¥,

Let F* be the closure of the component of R* - S* containing the component of
o R* associated with S*. Recalling our description of J* and the fact that
h(D¥) N J* C X*, we see that th(V}) C £(F*) and that V¥ N (fh)-1(X) consists pre-
cisely of the maximal curves in Df. Further, the fh-images of V;* and VJ?" are dis-
joint, for i #j.

There exist an open set U C Int R containing S and a 63 > 0 that together sat-
isfy the conclusion of Lemma 3 with respect to S, the 3-manifold R, and the positive
number which is the minimum of 6/16 and one-half the least of the distances be-
tween fh(V¥) and fh(V;‘) (i #j). As we remarked earlier, some tame 2-manifold J
contains X, is homeomorphically within 65 of S, and is so close to S that the fh-
image of each maximal curve of each D* bounds a 2-cell in J of diameter less than
6/8.

By Lemma 3, some retraction r; R — J moves each point of U less than 6/16.
Let ry be the retraction of R onto R induced by r, where R is the closure of the
component of R - J containing the component of 3 R under consideration. Define
g;: V’.f — R, by gi(x) = rofh(x) (x € V’i"), We remark that g, = fh on the maximal
curves of D’{, and hence the g;-image of each maximal curve in D’i‘ bounds a 2-cell
in J of diameter less than 6/8. Further, g; differs from fh | Vi by less than 6/16,
and g,(V}) N gj(V’J!‘) = for i #j. Hence, diam g,(V¥) <pu +6/8 < 5/4.

Since J is tame and hence has a product neighborhood, we may assume that
g; l(J ) consists precisely of the maximal curves of D* We now obtain mutually
exclusive singular 2 cells in R, of diameter less than 6/2 and with the same
“boundary” as f(3 Dj ) by successwely attaching to the g;-image of each maximal
curve the above 2- cell in J having the same boundary and diameter less than 6/8,
and then deforming this 2-cell slightly to one side of J. Of course, we must begin
this process with the “innermost” (on S) images under the g,’s of the maximal
curves of the D*’s and work “outward,” always deforming the next 2-cell to a lower
“J-level” of the product neighborhood of J. The resulting singular 2-cells were
also chosen so that they have diameter less than 6/4 + 6/4 = 6/2. Finally, by [17],
we can choose the desired nonsingular D; to lie very close to the above singular 2-
cells. As remarked before, the construction of the D; having boundaries belonging
to the other component of R - S is symmetric, and we assume that it also has been
completed.

For each i, the closed 2-manifold
- * *
Z. = D, U £[(a HY) - Int D¥]

has diameter less than 6, and hence bounds a polyhedral 3-manifold H; in R of
diameter less than €/2 such that H; can be piecewise linearly embedded in E3.
We leave to the reader the proof that H; is actually a cube-with-handles (note that
H; is a retract of R, so that the inclusion H; —» R induces a monomorphism on
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fundamental groups), and that if we define L to be the closure of R - U H;, then L
is homeomorphic to L¥*.

Finally, to verify that each component C of 9 L is homeomorphically within &

of S, we remark that we can obtain C by removing certain singular 2-cells of di-
ameter less than p from f(C*) (where C* is a component of 3 L* homeomorphic-
ally within u of, say, S*) and replacing them with 2-cells of diameter less than
6/2. Hence C is homeomorphically within o +u + 6/2 < 36/4 < 3¢/8 of S. This
completes the proof.

10.

11.

12.

13.

14.

15.

16.

17.
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