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1. INTRODUCTION

The purpose of the present paper is to use techniques and results of differenti-
able topology in the study of differentiable transformation groups. Although our ob-
jective is the same as that in recent works of Conner and Floyd (see, for example,
[4] ), we do not use bordism theory, a fundamental tool employed by Conner and
Floyd, but rely on pasting techniques instead. Recent papers by W. C. Hsiang and
W. Y. Hsiang on differentiable actions have some points of contact with our work.

Denote by S™ the unit n-sphere in euclidean (n + 1)-space, and regard sn-l a5 a
subspace of S™ by identifying every (x;, **, x,) € sn-1 with (xq, =, x,, 0) € S™.
Let G be a compact Lie group acting as a transformation group on S®, and let

F = {x e 5| Gx = x};

that is, let F be the set of the fixed points of G in S™. If the action is linear, it is
obvious that F is diffeomorphic to ST for some integer r (-1 < r <n). (It is under-
stood that S-! denotes the null set.) Moreover, there is a diffeomorphism of S™
onto itself that maps F onto ST.

Suppose that the action of G on S is only differentiable. Then F is a (differ-
entiable) submanifold of S®*. However, F may not be homeomorphic to a sphere,
because F may not even be an integral cohomology sphere [2]. In this paper we
shall study differentiable actions of G on S in which F is an integral cohomology
sphere. They are more general than linear actions, but the case just mentioned is
excluded.

Let G be a nontrivial compact Lie group and n(G) the integer such that G is
isomorphic to a subgroup of the orthogonal group O(n(G)) but not to any subgroup of
the orthogonal group O(n(G) - 1). It is easily seen that if G acts effectively and dif-
ferentiably on S, the fixed point set F is of dimension at most n - n(G) (Proposi-
tion 1). As a modification of a theorem of Montgomery and Samelson [7], we shall
show that for any nontrivial compact Lie group G, there are infinitely many effec-
tively differentiable actions of G on Sn(G)+3 of which the fixed point sets are inte-
gral cohomology 3-spheres with fundamental groups not isomorphic to one another
(Theorem 1). Hence the fixed point set of an effective differentiable action of any
nontrivial compact Lie group on S™ may not be homeomorphic to a sphere, even
when it is an integral cohomology sphere attaining the highest possible dimension.

We next consider the case when G is the circle group SO(2). As we said in the
preceding paragraph, it is possible to have an effective differentiable action of G on
S5 such that the fixed point set F is an integral cohomology 3-sphere that is not
simply connected. (Notice that n(SO(2)) = 2, so that n(SO(2)) + 3 = 5.) Therefore
such an action is not equivalent to a linear action. In this particular case, it is
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crucial whether F is simply connected. In fact, we can show that if the circle group
acts differentiably on S® (n > 6) in such a way that the fixed point set F is simply
connected and (n - 2)-dimensional, then the action is differentiably equivalent to a
linear action, so that F is diffeomorphic to S™-2 (Proposition 3).

Suppose that there is an effective differentiable action of the circle group on S™
with a simply connected fixed point set F. We have said that if n > 6 and F attains
the highest possible dimension, then F is diffeomorphic to S2-2 . On the other hand,
we shall see that if F attains the next highest possible dimension, that is, if
dim F =n - 4, then F may not be diffeomorphic to S*-4. In fact, we construct a
differentiable action of the circle group on S!1 whose fixed point set is an exotic
7-sphere (Theorem 2).

Finally, we study free differentiable actions of the circle group on S®. Our main
result: Let the circle group G act freely and differentiably on a homotopy sphere Z™
such that there is a sequence of invariant homotopy spheres

P25 a5 3T5 55,

Then Z5, 7, .-« Zn-2 gre diffeomorphic to 85, 7, -+, S2-2  respectively.
Moreover, for any differentiable action of the circle group on S5, there are, up to a
differentiable equivalence, only finitely many ways to extend it to such an action on
=0 with =5, -+, Z2-2 jpvariant.

2. ACTIONS OF AN ARBITRARY, NONTRIVIAL, COMPACT LIE GROUP

In this section, we study effective differentiable actions of a nontrivial compact
Lie group on a homotopy sphere of which the fixed point set is an integral cohomol-
ogy sphere of the highest possible dimension.

PROPOSITION 1. LetM™ be a connected, differentiable n-manifold, and let G
be a compact Lie group acting as an effective differentiable tvansformation group on
M"™ having a nonempty fixed point set ¥. Then F is of dimension at most n - n(G),
wheve n(G) is the smallest integer such that G is isomorphic to a subgroup of the
orthogonal group O(n(G)).

Proof. K p is a fixed point, there exists an invariant open neighborhood Q of p
such that the action of G on Q is differentiably equivalent to an orthogonal action of
G on euclidean n-space (see, for example, [8]). Therefore we may assume that Q
is an open n-disk on which there exists a coordinate system with respect to which G
acts orthogonally. Under this assumption, Q N F is a linear subdisk of Q, and its
orthogonal complement at p, denoted by Q', is an invariant linear subdisk of Q.
Since M®" is connected, Q' contains a principal orbit. Therefore G acts effectively
on Q', so that G is isomorphic to a subgroup of O(dim Q'). By the definition of
n(G), dim Q'> n(G). Hence the dimension of F at p is n - dim Q' < n - n(G).

Remark. We do not know whether the proposition holds when F is empty. In
other words, we can not determine whether there is an effective differentiable action
of a compact Lie group G on a differentiable manifold M? (dim n < n(G) - 2) with-
out fixed point.

By an integral cohomology n-spheve we mean a compact differentiable n-mani-
fold that has the integral cohomology group of the n-sphere S™. By a homotopy n-
sphere we mean a compact differentiable n-manifold with the homotopy type of S©.
Clearly, a homotopy n-sphere is an integral cohomology n-sphere, but an integral
cochomology n-sphere need not be a homotopy n-sphere.
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PROPOSITION 2. Let Y be a contractible, compact, differentiable (m + 1)-
manifold bounded by an integral cohomology m-spheve B (m > 0). Then there
exists a diffeventiable action of the ovthogonal group O(n) on a homotopy (m + n)-
spherve Z such that

(i) the fixed point set ¥ is diffeomorphic to B,

(ii) all orbits in = - F are of the type O(n)/O(n - 1),
(iii) the orbit space Z/0(n) is diffeomorphic to Y, and
(iv) theve is a diffeventiable cvoss-section s:Z/0(n) — Z=.

Proof. By the collaring theorem, there is a diffeomorphism ¢ of B x[0, 1) onto
a neighborhood of B in Y such that ¢(x, 0) = x for each x € B. Let D™ be the unit
n-disk in euclidean n-space, Sn-1 the boundary of D®, E =D® - Sn-1 and
E,=E - {0}. Then the map

Y:BXEy; — ¢(BX(0, 1)) xs™!,
defined by
wx, y) = (o(x, IylD, /Iy,

is a diffeomorphism. Therefore we can obtain a differentiable (m + n)-manifold =
from the disjoint sum M = B X E + (Y - B) X S2-1 by identifying each (%, y) € BX E,
with Y(x, y), where the differentiable structure on X is the one such that the pro-
jection p : M — Z is differentiable. Notice that when n =1, 2 is the double of Y

on B.

Let G =0O(n) act on D® in the standard way. Then there is a differentiable ac-
tion of G on M such that g(x, y) = (x, gy) for each g € G and each (x, y) € M.
Since gy = g holds for all g € G, it follows that the action of G on M induces a
differentiable action of G on Z commuting with the projection p.

From the construction of the action of G on Z, it is clear that the fixed point set
F is p(B X {0}), which is diffeomorphic to B, and that all orbits in Z - F are of the
type O(n)/O(n - 1). Moreover, the map £ : M — Y, defined by

#x, |yvll) if (x,y) e BXE,

&x,y) =
X if (x,y)e (Y - Byxsn-1,
induces a diffeomorphism £* of /G onto Y with £ = £¥p. Let b be a point of
sn-1 andlet A : Y — = be defined by

p(x, 0) if (x,0) e BXE,
Ax) = ‘
p(x, b) if (x, b) € (Y - B) xs?-1,

It is easily seen that s = A£* is a differentiable cross-section. Hence (i) to (iv) are
satisfied, and consequently the last part of our assertion holds. For the first part of
our assertion, it remains to be shown that = is a homotopy (m + n)-sphere, or equi-
valently, that = is a simply connected integral cohomology (m + n)-sphere. Because
it is easy to compute the fundamental group and the integral cohomology group of Z,
we omit the details.

THEOREM 1. For each nontrivial compact Lie grvoup G, there exist infinitely
many effective differventiable actions on the (n(G) + 3)-spheve (with the standavd
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diffeventiable stvucture) for which the fixed point sets are integval cohomology
spheves whose fundamental groups ave not isomovphic to one another; heve n(G)
denotes the smallest integer such that G is isomovphic to a subgroup of O(n(G)).

Proof. Let Y be the contractible, compact, differentiable 4-manifold bounded by
a multiply connected integral cohomology 3-sphere B as given in [6]. Using induc-
tion on r, we shall now construct, for each positive integer r, a compact differenti-
able 4-manifold Y, of boundary B,.. Weset Y, =Y. If Y,._; has been constructed
for some r (r > 1), let H* be the upper half of the open unit 4-disk in euclidean 4-
space, p a point of B.._;, and q a point of B. Then there is a diffeomorphism ¢ of
H% onto an open neighborhood of p in Y .._; and a diffeomorphism ¢ of H, onto an
open neighborhood of q in Y such that ¢(0) = p and Y(0) = q. We define Y, as the
connected sum Y,._; #Y obtained from the disjoint sum (Y,._; - {p})+ (Y - {a})
by identifying ¢(x) with Y((1 - ||x|)x) for all x € H4 - {0}. It is easily seen that
Y .. is unique up to a diffeomorphism, that it is simply connected, and that it is in-
tegrally cohomologically trivial. Therefore Y , is contractible. It is also easily
seen that B, is the connected sum B._; # B in the usual sense, so that the funda-
mental group of B,. is the free product of r copies of the fundamental group of B.
Hence, for r # s, the fundamental groups of B, and B are not isomorphic.

By Proposition 2, there exist for each positive integer r a homotopy (n(G) + 3)-
sphere Z, and an effective differentiable action of O(n(G)) on Z . such that (i) the
fixed point set F, is diffeomorphic to B,., (ii) all orbits in 2. - F_ are of the type
O(n(G))/O(n(G) - 1), (iii) the orbit space Z./O(n(G)) is diffeomorphic to Y., and
(iv) there is a differentiable cross-section s, : £./0n(G)) — Z,.. By (i),
¥,, F,, --- are integral cohomology 3-spheres whose fundamental groups are not
isomorphic to one another. Since Y. =Y, _; #7, it follows from (i) to (iv) (or from
the construction of ~ ._; and Z,) that

z =ZI’-1 #E,

r
where the connected sum is obtained by means of an equivariant d)if(feomoi:phism'bf a
neighborhood of a fixed point in Z . _; onto a neighborhood of a fixed point in
zZ (=)

1

Assume first that G is a finite group of order 2, say G = O(1). Since the double
of Y on B is diffeomorphic to the 4-sphere S4 (see [6]), each Z. is diffeomorphic
to S%. Hence our assertion holds for G = o(1).

Assume next that G contains more than two elements. Then n(G) > 1, so that
n(G) + 3 > 5. Therefore the group ® of diffeomorphism classes of homotopy spheres
of dimension n(G) + 3 is finite [5], and hence, for some positive integer rg, Z, is
diffeomorphic to the (n(G) + 3)-sphere with the standard differentiable structure if r
is a multiple of r,. Let G act on Z_ as a subgroup of O(n(G)). The action is
clearly differentiable and effective. Since G is not isomorphic to any subgroup of
O(n(G) - 1), the fixed point set of G coincides with that of O(n(G)). Hence, by letting
r =rq,, 2ry, ***, we again obtain desired actions of G.

Remarks. (1) Theorem 1 is a slight improvement on the following result of
Montgomery and Samelson [7]: If G is a nontrivial compact Lie group, there exists
an integer n > max {n(G), 10} + 4 such that there are infinitely many differentiable
actions of G on S*® whose fixed point sets are integral cohomology 4-spheres with
fundamental groups not isomorphic to one another,

(2) If the action of G is required to be orientation-preserving and n(G) is re-
placed by the smallest integer n'(G) such that G is isomorphic to a subgroup of
SO(n'(G)), then Propositions 1 and 2 and Theorem 1 remain valid.
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(3) If G is a nontrivial compact Lie group that acts as an effective differentiable
transformation group on S™ and whose fixed point set is a multiply connected integral
cohomology sphere, then n > n(G) + 3. Hence the dimension of the sphere in Theo-
rem 1 is the lowest possible.

(4) Let G be a compact Lie group acting effectively and differentiably on the
(n(G) + k)-sphere and having a k-dimensional fixed point set F. In Theorem 1, we
see that for k = 3, F need not be homeomorphic to the k-sphere. However, we do
not know whether this is still true for k=0, 1, 2.

The following is a special case of Theorem 1.

COROLLARY. There exists a diffeventiable action of the civcle group on the 5-
sphere such that the fixed point set is a multiply connected integral cohomology 3-
sphevre.

3. ACTIONS OF THE CIRCLE GROUP

We shall now study differentiable actions of the circle group SO(2) on a homotopy
n-sphere Z™. It is well-known that in this case the fixed point set F is an integral
cohomology sphere of even codimension (see, for example, [1]). The corollary in the
last section shows that if dim F =n - 2, that is, if F has the highest possible dimen-
sion under an effective action, then F need not be simply connected. The following
proposition shows that whether F is simply connected is really crucial here.

PROPOSITION 3. Let G be the civcle group SO(2), and let it act as a diffeven-
tial transformation group on a homotopy spheve 1 such that the fixed set F is
(n - 2)-dimensional (n > 6) and simply connected. Then =1 is diffeomorphic to the
n-spheve Sn, F is diffeomorphic to the (n - 2)-spheve, and the action of G on S®
is differentiably equivalent to a lineav action.

Proof. Since Z*™ is a homotopy n-sphere, it is an integral cohomology n-sphere,
so that F is an integral cohomology (n - 2)-sphere. From this result and the hy-
pothesis that F is simply connected, we infer that F is a homotopy (n - 2)-sphere.

It is easily seen that all orbits in Z2 - F are of the same type; hence we may
assume that G acts freely on Z" - F. Therefore the orbit space Z™/G is a com-
pact, differentiable (n - 1)-manifold with boundary F. It is easy to show that Z%/G
is simply connected and that its integral cohomology group is trivial. Therefore
=®/G is homotopically trivial, and hence it is contractible. Since n > 6, it follows
from Smale’s theorem [9] that =Z"/G is diffeomorphic to the closed unit (n - 1)-disk
Dn-1l in euclidean (n - 1)-space. Hence F is diffeomorphic to the (n - 2)-sphere.

Let ¥ : D?-1 — %1n/G pe a diffeomorphism. Then there is a differentiable map
f:Dn-1 — =0 gych that f* = 7f, where 7 : Z® — /G is the projection. Let Dk
denote the closed unit k-disk in euclidean k-space. Then we may regard

{(x, y) e D*2xD?| [x||2 + |ly[|2 = 1}
as S™, and an orthogonal action of G on S™ is given by

g(x, y) = (%, gy)

for all g € G and (x, y) € S™.

Let b be any preassigned point of the boundary of D2. It is easily seen that
h : S™ — 21 | defined by
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gf(x) = h(x, g(1 - || x[|2)}/2p)

for all x € D®-1 and g € G, is an equivariant diffeomorphism. Hence our assertion
is proved.

Remark. Proposition 3 also holds for n < 3. For the cases n = 4, 5, 6, Propo-
sition 3 is dependent on the unsolved cases of the Poincaré conjecture.

Suppose G = SO(2) acts differentiably on the n-sphere S" and has a simply con-
nected fixed point set F. We shall show that if dim F =n - 4, that is, if F has the
second highest dimension possible under an effective action, then F is not neces-
sarily diffeomorphic to the (n - 4)-sphere. We need the following preliminary
result.

In the following proposition we speak of a differentiable structure on ="/G, and
this requires definition. Away from the fixed point set the action of G on G" gives
a fibering, and in this region, differentiable coordinates in the base space are given
as usual. Let x be a point of the fixed point set F, and let x* and F* correspond
in the base space. In 2™, a neighborhood of x is locally a product of a 4-cell and
an (n - 4)-cell in F. Down below, a neighborhood of x* is locally a product of a 3-
cell and an (n - 4)-cell. This latter product is to be used to give local coordinates
around x*. It is not important that the natural map from above to below is not
differentiable.

PROPOSITION 4. Let =™ ! and =% pe homotopy sphevres of dimension n - 1
and n - 4, vespectively (n > T), and let £ be an imbedding of Z*~* into =n-1 | Then
there exists a diffeventiable action of the circle group G = SO(2) on a homotopy n-
spheve Z™ such that

(i) the fixed point set F is (n - 4)-dimensional,
(ii) G acts freely on T™ - F, and

(iii) there is a diffeomorphism of the orbit space /G onto ™! mapping F
onto f(Zn-%),

Proof. Let there be a2 Riemannian metric on zn-1 , and let
A E o £z

be the normal bundle of £f(=®%) in zo-1 Then, for some 6 > 0, the exponential
function

exp: E — zn-1

maps KZ {v € EI ||v“ < 6} diffeomorphically onto a closed tubular neighborhood
of £(Z™~%).

Let D2KT2 pe the closed unit (2k + 2)-disk in unitary (k + 1)-space, that is, in
the set of points (z,, -, Zk) satisfying

||(zo, .ee, zk)”2 =2zyZ,+ " +2z, 2 <1,

where zg, ***, z) are complex numbers; and let S2k*1 pe the boundary of D2k+2,
Regard G as the unit circle in the complex field, and let G act on D2k%¥2 go that

g(z(), Tty zk) = (gz(), ".s gzk)
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for each g € G and each (zg, ***, zi) € DZK*2_ Then G leaves the center (0, -+, 0)
of D2kt2 fixed and acts freely on D2k+2 - {(0, ---, 0)}. Moreover, S25t1 /G is the
complex projective k-space; therefore

T.(S?%¥*1/G) 20 for 0<r<2k and r #2,
and for k>0, 7 Z(S?'k*'1 /G) is infinite cyclic and has a generator represented by the
2-sphere 83/G, with S3 given by z,Z, + 2z, Z; = 1.

Let 9K be the boundary of K, and let a € f(=""%). Then A~1(a) N 9K is a 2-
sphere, so that we have a diffeomorphism h : A-1(a) N 9K — S3/G. When
2k > 2(n - 2), h can be extended to an imbedding

h, : 9K — §¥tl/G,

because we can first extend h to a map of 3K into S2ktl/G by means of obstruction
theory and then approximate the map by an imbedding.

Let m : §2ktl _, g2k+l /G pe the projection. Then

M' = {(v, y) € Kx D2k*2| either |v| = |y]| = 0 or else

Ivl = Nyl # 0 ana by&v/fvlD) = aty/lly D}

is a compact differentiable n-manifold with boundary, and there exists a differenti-
able action of G on M' such that

g(v, y) = (v, gy)

for each g € G and each (v, y) € M'. It is easily seen that the fixed point set F of
G in M' is the set {(v, y) € M'| ||v| = |y = 0} and that G acts freely on M' - F.
Let X = Z™-1 _ exp(Int K). By obstruction theory, the map

hl(exp)'1 : exp(9K) — S2ktl/g
can be extended to a differentiable map

Let
M" = {(x,y) € Xx S**1| n,(x) = n(y)}.

Then M" is a compact differentiable n-manifold with boundary, and there exists a
free differentiable action of G on M" such that for

g(x, y) = (x, gy)

for each g € G and each (x, y) € M". It is easily seen that there exists a natural
diffeomorphism of the boundary of M' onto the boundary of M" mapping every
(v, y) into (exp v, y).

Denote by Z" the closed differentiable n-manifold obtained from the disjoint
sum M'+ M" by identifying every point (v, y) of the boundary of M' with (exp v, y)
of M". A direct computation shows that the fundamental group of =™ vanishes and
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that =™ has the integral cohomology group of the n-sphere. Hence X% is a homo-
topy n-sphere. Since the identification map from the boundary of M' to the bound-
ary of M" commutes with the action of G, it follows that there exists a differen-
tiable action of G on Z™ whose restrictions to M' and to M" are those given in the
last paragraph. Let

p:M +M" — znl
be defined by
p(v,y) = expv for (v,y) e M',

p(x,y) = x for (x,y) € M".

Clearly p induces a desired diffeomorphism of /G onto Z®-l1, Hence Proposi-
tion 4 is proved.

THEOREM 2. There exists a differentiable action of the civcle group G = SO(2)
on the 11-spheve (with the standavd diffeventiable strvuctuve) such that the fixed
point set F is an exotic T-sphere and G acts freely on the complement of F.

Proof. Since the group 0, of diffeomorphism classes of homotopy 7-spheres is
of order 28 [5], there exists a homotopy 7-sphere =7 representing an element of
order 7. It is known [5] that =7 bounds a parallelizable compact differentiable 8-
manifold. It follows from a theorem of Hirsch [9] that =7 x D3 is diffeomorphic to
S7x D3, where D3 is the closed unit 3-disk in euclidean 3-space and S7 is the unit
'7T-sphere in euclidean 8-space. Therefore we have an imbedding

£f:27 - 510,

because there is a standard imbedding of S7 X D3 into the unit 10-sphere S190 in
euclidean 11-space.

By Proposition 4, there exists a differentiable action of the circle group G on a
homotopy 11-sphere Z11 such that the fixed point set F is 7-dimensional, G acts
freely on =11 - F, and some diffeomorphism of Z11/G onto S10 maps F onto
f(=7). As in the proof of Theorem 1, we can construct, for each positive integer r,
a homotopy 1l1l-sphere Zil as the connected sum of r copies of =11 at fixed points,
in such a way that there exists a differentiable action of G on 211,1 whose fixed point
set F_. is diffeomorphic to the connected sum of r copies of =7, and whose orbit
space Z11/G is diffeomorphic to the connected sum of r copies of Z!1/G (and
hence is diffeomorphic to S10). Since the group ©,, of diffeomorphism classes of
homotopy 11-spheres is of order 992 [5], there exists a factor r of 992 such that
z1l is diffeomorphic to the unit 11-sphere S!! in euclidean 12-space. However, r
is not divisible by 7, so that F_ is an exotic 7-sphere. Hence Theorem 2 is proved.

Remarks. (1) In the proof of Theorem 2, =7 is imbedded into S10 so that the
orbit space Z11/G is diffeomorphic to S10. If S10 is replaced by a homotopy 10-
sphere representing an element of ©;, of order 3 (see [5]), then for any factor r of
992, Eil/G is an exotic 10-sphere.

(2) The action of the circle group on the 11-sphere given in Theorem 2 is not
differentiably equivalent to a linear action. However, if one fixed point is removed
from the 11-sphere, then the action is differentiably equivalent to a linear action on
euclidean 11-space (see [3}]).
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(3) Since we do not know any exotic k-sphere for k < 7, we do not know whether
Theorem 2 holds for spheres of lower dimension. However, it is not difficult to
prove the theorem for spheres of higher dimension. For example, the same argu-
ment shows that there is a differentiable action of the circle group on the 13-sphere
(with the standard differentiable structure) having an exotic 9-sphere as its fixed
point set. This clarifies a point discussed in [2].

4. FREE ACTIONS OF THE CIRCLE GROUP

PROPOSITION 5. Let D be a contractible, compact, diffeventiable (n - 1)-
manifold with boundary Y, and let the civcle group G act freely and differentiably
on Y. Then theve exists a homotopy n-spheve Z™ such that there is a free diffeven-
tiable action of G on Z™ and an imbedding f : D — Z™ satisfying the following con-
ditions::

a) For each g € G andeach y € Y, f(gy) = gi(y).

b) Some diffeomorphism of G X (D - Y) onto Z" - £(Y) maps every
(g,y) e GXE(D -Y) into gy, where y goes to gy undevr the action of G on Z™.

Proof. Let E be the open unit disk in the complex field. Then
X'=EXY

is an open differentiable n-manifold. By the collaring theorem, there is an imbed-
ding

h:[0,1)XY - D
such that h(0, y) =y for each y € Y. Let
X" = Gx (D -Y).

Then X" is also an open differentiable n-manifold. Moreover, there exists a dif-
feomorphism )\ from the open subset (E - {0}) XY of X' to the open subset
G X h((0, 1) X Y) of X" defined by

Az, y) = (z/ |||, u(|z]l, @/[z])-ty),

where z € E - {0}, y € Y, and G is regarded as the unit circle in the complex
field. Therefore we obtain a closed differentiable n-manifold =™ from the disjoint
sum X'+ X" by identifying (z, y) with A(z, y) for all (z, y) € (E - {0}) X Y. Ttis
easy to show that =" is simply connected and has the integral cohomology group of
the n-sphere. Hence Z™ is a homotopy n-sphere.

Let G act on X'+ X" in such a way that

(gz, gy) for g e G and (z, y) € X',

Il

g(z, y)
g(g', u) = (gg', u) for g€ G and (g', u) € X" .
Obviously the action is free and differentiable. Since the action commutes with the

diffeomorphism 2, it induces a free differentiable action of G on Z™. Hence it re-
mains to be shown that there is an imbedding f : D — =™ satisfying a) and b).
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Define f : D —» =™ as follows. Let p': X'— Z™ and p": X" — Z™ be the natural
inclusions. Whenever u € D - Y, we let

f(u) = p™(1, u).
Whenever u = h(t, y) with (t, y) € [0, 1) X Y, we let
f(u) = p'(t, ).
Notice that if u = h(t, y) with (t, y) € (0, 1) X Y, then
At, y) = (1, h(t, y)) = (1, v),

so that p'(t, y) = p"(1, u). Hence f is well-defined. Now it is easy to see that f
satisfies a) and b). This completes the proof.

The following is a converse of Proposition 5.

THEOREM 3. Let the circle group G act freely and differentiably on a hom-
otopy n-sphere Z™, and let =2 pe an invariant submanifold of T® that is a
homotopy (n - 2)-spheve. Then theve exists a contractible compact diffeventiable
(n - 1)-manifold D with boundary Y and an imbedding £ : D — =™ such that a) and
b) of Proposition 5 ave satisfied and £(Y) = Z0-2,

Proof. By hypothesis, Z" is an integral cohomology n-sphere admitting a free
action of the circle group. We infer that n is odd. It is well-known that if n=1, 3,
then each free differentiable action of the circle group on a homotopy n-sphere is
differentiably equivalent to an orthogonal action. Therefore our conclusion holds for
these cases, and we shall now assume that n > 3.

There exists an invariant Riemannian metric on Z", and we assume that such a
metric has been chosen.

For y € Z™-2_ denote by U(y, 6) the set of points x € Z® such that x and y are
joined by a geodesic, of length at most & and orthogonal to »n-2 at y. Choose a
number & > 0 such that each U(y, 6) is a closed 2-cell and such that there exists a
fibering map

7:U — zh-2

with 7-1(y) = U(y, 6) for all y € =Z2-2, Let B be the boundary of U. Both B and U
are invariant, and

7:B — =72

gives a circle bundle. Whenever A is an invariant subset of Z*, let A* be the orbit
space A/G and p the natural projection

p: A — A¥,

The fibering 7 : B — =n-2 jg trivial, because all circle bundles over a homotopy
n-sphere (n > 3) are trivial. Hence B is diffeomorphic to zn-2x G. Now
p : B — B* is a principal fiber map in which the fibers are circles.

The remarks following next must be considered in connection with the action of
G on =™, since otherwise they would not be true. A basic fact is that an orbit of G
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in Z® - 372 has linking number +1 with Z®~2, By examining the spectral se-
quence (or otherwise) we can see that B* is an integral cohomology (n - 2)-sphere.
The homotopy sequence shows also that B* is simply connected, so that B* is a
homotopy (n - 2)-sphere.

There is a cross-section for the fibering 7: B — zn-2 given by

s: 2% > B,
Let
r:=*%xR - B
be the covering map such that whenever (y, t) € -2 X R, then r(y, t) € 7-1(y) and
r(y, 0) = s(y), and such that if t <t' <t + 1, the geodesic joining y and r(y, t) and

the geodesic joining y and r(y, t') intersect at an angle 2#(t' - t). For each
g = exp(27¢i) € G and each x = r(y, t) € B, let a new action of G be given by

gox = r(y, t+¢).

Since the metric is invariant, it follows that
g'(gox) = go(g'x)

for g, g' € G and x € B.

We shall now show that there exists a differentiable map

f:2"°2xR - R
such that
(a) f(y, 0) =0 for all y € "2 and
(b) r(y, i(y, t)) = (exp (- 2nti))s((exp 27ti)y) for all (y, t) € =P 2 X R.

Since r(y, i(y, 1)) = x(y, {(y, 0)), it will follow that f(y, 1) is an integer d that is in-
dependent of y. In order to prove our assertion, we consider the space
(222 X R) X R and in it the points (y, t, t') such that

r(y, t') = (exp (- 2nti)) s ((exp 27ti)y).
Because these points form a covering space of zn-2 x R, the space =2-2 xR is

simply connected; this shows the existence of i(y, t).

We shall now see that d =+1. Using r'(y, t) = r(y, -t) for (y, t) € Zn-2 X R, if
necessary, we may assume that d = - 1.

Let 7* : B* — »n-2% pe induced by w. Since pm = 7% p, it follows that 7*ps = p,
and therefore the diagram

n-2

= *——_?_,” B
1 l
%k
zn-2 B*

77*

is commutative. When exp 27ti € G and y € =72,
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(ps) (exp 2wti)y = p((exp 2nti)r(y, f(y, t)) = p(exp 2nf(y, t)i)o (exp 2uti)s(y) .
We infer that for y* € wn-2* ,
ps: p-l(y*) — ﬂ*-l(y*)
is of degree d.

Let ¢ and c¢' be the fundamental cycles on p~1(y*) and #*-1(y*). Then there
exists a 2-chain b in £%-2 and a 2-chair b' in B* such that

ob = ¢, ob' = ¢c'.

*

Then pb and 7*b' are 2-cycles in £™-2 each of which belongs to a generator of
*

H,(Z7-2"). By a remark above,

opsb ~ dc' = dob', 09(psb -db') =0, and psb -db' =2A (A a 3-chain in B¥*).

Therefore
pb - 7*db' = 7w¥*(psb - db') = 9n*A,

that is, the 2-cycles pb and w*db' are homologous, and hence d = +1. As said
earlier, we assume that d = - 1.

From this assumption, it follows that for (y, t) € =2 2 X R,
fly, 1+t) = -1+1(y, t),
and f(y, t) +t, as a function of t, is a periodic function of period 1. Let
1
©y) = SO iy, D +t)at, () = x(y, ).

Then s': >P-2 — B is a cross-sectionto 7: B — -2

Whenever g = exp 27¢i € G and (y, t) € Z2~% X R, then

exp (27f(y, t + ¢p)i) o s(y) = r(y, f(y, t + ¢)) = g~1(exp (- 2nti)) s((exp 27ti)(gy))

g-1 r(gy, f(gy, t)) = exp(2ni(gy, t)i) og~!s(gy)

exp 2n(f(gy, t) + £(y, ¢))ios(y).
Hence

iy, t + ¢) = f(gy, t) +£(y, ¢),
so that

tey) = (" ey, 0+ 0at = (GG, t+9) - 13, )+ Dt = 3) - 5, 6) - 6.
0 0

It follows that
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s'(gy) = r(gy, t(gy)) = exp2nt(gy)ios(gy) = g(exp 2u(t(gy) + £(y, ¢))ios(y))

glexp 2a(t(y) - ¢lios(y)) = glg-1os'(y)).
Let
h: =2 x[o, 1] —» =
be the map such that
(a) h(y, 1) =y for y € Z*~2 and

(b) h maps y X [0, 1] proportionally onto the geodesic joining s'(y) and y for
all y € Zn-2

Then h(Z®-2x [0, 1)) intersects each orbit in Gh(Z®~2 x [0, 1)) at exactly one point,
so that h(Z"-2 x [0, 1)) is a cross-section of

p : Gh(Z*"2 x [0, 1)) — Gh(=™"2 x [0, 1))*.
As before, it can be shown that

E, = (2" - Gh(z""? x [0, 1]))*

is homologically trivial, and in fact, that E; is a homotopy (n + 1)-ball.

Let E be obtained from the disjoint union (Z® - =2-2)* 4+ (Zn-2 x [0, 1]) by
identification of each (y, t) € Zn-2 X (0, 1) with ph(y, t). Then E; C E, and E - E;
is diffeomorphic to Zn-2 X (0, 1]. Hence E is a homotopy (n + 1)-ball.

The space (I - ZP-2)* jg contractible, and therefore there exists a cross-
section

1. (Zn _ Zn-Z.)* — zn _ Zn-?.

of p: 20 - In-2 — (Zn - In-2)%  We may assume that f'(ph(y, t)) = h(y, t) for each
(v, t) € Z0n-2 x (0, 1). Hence we may combine f' and h to obtain the desired map

f:E — 20,

This completes the proof of Theorem 3.
THEOREM 4. Let the civcle group G act freely and diffeventiably on a homotopy
sphere Z® such that theve exists a sequence of invariant homotopy spheres

05 32 5 o5 37 5 55,

Then =2, =7, -+, Z°°2 gye diffeomorphic to S°, ST, -*-, S*~2 | yespectively.
Moveover, for any free diffeventiable action of the civcle group on =5 , theve ave, up
to a differentiable equivalence, only finitely many ways to extend it to such an action
on ™ with 35, =7 - IN-2 jnvariant.

By Theorem 3, Z"-2 bounds an (n - 1)-disk D*~! in =™, and hence =™"2 is dif-
feomorphic to S*-2, Similarly -4, --- =5 are diffeomorphic to standard spheres
of appropriate dimensions.

The disk D™-! is essentially obtained as follows:

D1 = n(=m-% x [0, 1]) U, E;,
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where
a:93E; — h(Z™?x {0})

is a diffeomorphism. Notlce that topologically 9E; and h(Z™ 2 x { 0}) are (n - 2)-
spheres. The union D®-! has exactly one differentiable structure, so that we obtain
a unique structure obtained for Dr-1, However, the action on = (as well as the
dlfferentlable structure of =™) depends not merely on the differentiable structure of
pn-1l , but also on . The action on Z™ and its structure depends on the space
Zn/G which is diffeomorphic to D®! with the boundary =72 collapsed into its
orbit space under the action of G given on »n-2  This depends on «, and its vari-
ations are given by

-1
>?/G # =1

where Z™-1 is a homotopy (n - 1)-sphere. Since the number of diffeomorphism
classes of homotopy (n - 1)-spheres is finite, the theorem follows.
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