THE FUNDAMENTAL EQUATIONS OF A SUBMERSION
Barrett O’Neill

1. INTRODUCTION

Let M and B be Riemannian manifolds. A Riemannian submevsion w: M — B is
a mapping of M onto B satisfying the following axioms, S1 and S2:

S1. 7 has maximal rank;

that is, each derivative map n, of 7 is onto; hence, for each b € B, 7-1(b) is a
submanifold of M of dimension dim M - dim B. We use the language of fiber
bundles, although 7 certainly need not be the projection of a bundle. In particular,
the submanifolds w-1(b) are called fibers, and a vector field on M is vertical if it
is always tangent to fibers, horizontal if always orthogonal to fibers; we use corre-
sponding terminology for individual tangent vectors. The second axiom may now be
stated in the following form.

S2. m, preserves lengths of horizontal vectors.

Submersions occur widely in geometry (for example, as projection mappings of
suitable Riemannian coset spaces). In classical geometry, a surface of revolution
or a family of (so-called) parallel surfaces in R3 each leads in an obvious way to a
submersion. Further examples are given in Section 5, where in particular we com-
pute (relative to a natural Riemannian structure) the sectional curvature of the
frame bundle of a Riemannian manifold.

If we consider a submersion as the generalization of an isometry M — B to the
case where dim M > dim B, then the notion bears comparison with the generaliza-
tion to dim M < dim B, that is, with an isometric immersion. The character of an
immersion is described by a single tensor, the second fundamental form. For a
submersion we shall define two such tensors, one of which is the second fundamental
form of all the fibers. Our purpose is to find the analogues, for a submersion, of the
Gauss and Codazzi equations of an immersion, and thus, in particular, to find the
relations linking the Riemannian curvatures of M, B, and the fibers 7-1(b).

Certain aspects of submersions have been investigated, for example, by Hermann
[1], and in greater generality (“bundle-like metrics”) by Reinhart [4] and Hermann
[2]. Our curvature results were suggested by the special case used by Kobayashi [3].
In preparing this paper we have benefited from conversations with A. Gray, who, in
particular, suggested using the term “submersion?” in this context.

2. THE FUNDAMENTAL TENSORS T AND A

For a submersion 7: M — B, let & and 7 denote the projections of the tangent
spaces of M onto the subspaces of horizontal and vertical vectors, respectively.
(The same letters will serve for the horizontal and vertical distributions of Chevalley
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type on M.) The letters U, V, W will always denote vertical vector fields, and X,
Y, Z horizontal vector fields.
The second fundamental form of all fibers 7-!(b) gives rise to a tensor field T
on M, defined for arbitrary vector fields E and F by
Ty F = JJ’VAI/E(‘I/F) + "I/VVE(.%’F),

where V is the covariant derivative of M. (It is easy to check that T is in fact a
tensor—of type (1, 2).) We shall make frequent use of the following three properties
of T:

1. At each point, Ty is a skew-symmetric linear operator on the tangent space
of M, and it reverses the horizontal and vertical subspaces.

2. T is vertical; that is, Tg = Ty g .
3. For vertical vector fields, T has the symmetry property Ty W = T V.

This last fact, well-known for second fundamental forms, follows immediately from
the integrability of the vertical distribution.

To define the other tensor A mentioned in the Introduction, we simply dualize
the definition of T by reversing & and %. Thus

Ap F = UV (HF) + HY 4y (VF) .

Again A is a (1, 2)-tensor, and it has the following properties:

1'. At each point, Ax is a skew-symmetric linear operator on the tangent space
of M, and it reverses the horizontal and vertical subspaces.

2'. A is horizontal; that is, Ag = A »E.
3'. For horizontal vector fields, A has the alternation property AyxY = -Ay X.
(The last property will be established in the proof of Lemma 2.)

In computations with tensor equations, we are free to make special choices of
vector fields. For the purpose of relating the geometry of M to that of B, the
natural choice is as follows: We define a vector field X on M to be basic provided
X is horizontal and w-related to a vector field X,,< on B. Every vector field X* on
B has a unique horizontal lift X to M, and X is basic. Thus X <> X, is a one-to-
one correspondence between basic vector fields on M and arbitrary vector fields on
B. This correspondence preserves brackets, inner products, and covariant deriva-
tives to the following extent:

LEMMA 1. If X and Y are basic vector fields on M, then

1. (X,Y)={(X,, Y, )orm,

2. #[X, Y] is the basic vector field covresponding to [X,, Y],
3. #Vx Y is the basic vector field corresponding to V*X* (Y*) .

Proof. The first assertion follows from axiom S1, the second from the identity
T [X, Y] =[X,, Y,]. We shall prove (3), using the standard formula for Riemannian
covariant derivative in terms of inner products and brackets. In fact, for a (basic)
vector field Z,
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2{vxY, z) = x{v,2) +Y(Z, x) - 2{X, Y)

X1, 21) + (Y, [, x1) + {2, [X, Y]) .

But, for example, XY, Z ) = X{{¥,, 2,) o 1} = X,{Y,, Z,) o . With a simi-
lar formula for brackets, this shows that the right side of the equation above is just
2 (V*X* Y., Z*> oq. It follows that Vx Y is m-related to V*X* Y,, hence # VY
is basic and corresponds to this covariant derivative.

We now show that A is essentially the integrability tensor of the horizontal dis-
tribution <# on M.

LEMMA 2. If X and Y are horizontal vector fields, then Ax Y = —é-‘l/ [X, Y].

Proof. Since [X, Y] =VxY - VyX, we have the relation ¥[X, Y] = AxY - AyX.
Thus it suffices to prove the alternation property 3', or, equivalently, to show that
Ay X =0. We may assume that X is basic, hence that 0 = V<X, X> =2 <VVX, X)

for any vertical vector field V. But [V, X] = Vy X - V¢V is vertical (since V is
m-related to the zero vector field), hence

(TyX, XY = (Vg V, Xy = -{V, VX ) = -{V, Ay X ).
Since A X is vertical, the result follows.

Geometrical features of the fibers will be distinguished by a caret (*). For the
covariant derivative, for example, ¥y W =7 Vy W, where V and W are vertical
vector fields. We can now summarize the relation of T and A to the various co-
variant derivatives as follows:

LEMMA 3. Let X and Y be horizontal vector fields, and V and W vertical
vector fields. Then

1. VyW = Ty W+ VW,

2. VyX = #VyX+ TyX,

3. VxV = AxV+¥VyV,

4. VxY = #VxY +AxY.
Furtheymove, if X is basic, VX =AxV.

]

1

(The final assertion follows as above from the fact that [V, X] is vertical when
X is basic.) In the right-hand members of the four equations, we have written the
horizontal terms first; note that only four of the eight terms are tensorial.

3. COVARIANT DERIVATIVES OF T AND A

The covariant derivatives VT and VA will appear in the fundamental equations
derived in the next section. First we want to determine the extent to which these
derivatives are “algebraic,” that is, depend only on T and A without intervention of
other covariant derivatives or of curvature.

LEMMA 4. If X and Y ave horizontal and V and W ave vevrtical, then

(VyAly = -Ap w, (VxTly =-T, v,
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(Vx Ay = -Ap ws (VWyTy =-Tg y-
Proof. For example, if E is an arbitrary vector field, then

(VV A)W E = VV(AW E) - AVVW(E) - AW(VV E).

But since A is horizontal, the two outer terms vanish, and in the remaining term,
Vy W can be replaced by #Vyy, W = Ty W,

Because Tg and Agp are, at each point, skew-symmetric linear operators, it
follows that (Vg T)g and (VyA)p are also skew-symmetric and linear. However,
the following lemma shows that the latter operators do not, in general, retain the
property of reversing horizontal and vertical vectors.

LEMMA 5. If X is a horizontal vector field and U, V, W are vertical, then
((VyA)xV, W) = (TyV, Ax W) - {TyW, Ax V).

The proof is a slightly more complicated version of the preceding one. As long
as the properties 3 and 3' from Section 2 are not used, T and A are dual under
reversal of “horizontal” and “vertical.” (In particular, the preceding lemma gives
rise to three similar formulas.) These alternation and symmetry properties are

generally lost under covariant differentiation; the following lemma deals with a use-
ful exceptional case.

LEMMA 6. If X and Y ave hovizontal, and V and W vevtical, then

1. ((VE A)xY, V> is alternate in X and Y,

2. {(VgT)yW, X) is symmetric in V and W.

Proof. Expand the covariant derivatives, and use properties of T and A.

We are now reduced to just four types of covariant derivatives of T and A,
namely

((V,05Y, V), {((VwAY, VY, ((V,TNW,X), {((VyTyV,X),

with the usual notation for horizontal and vertical vector fields. As far as I know,
none of these is algebraic. For the first type, we have the following identity:

LEMMA 7. If V is vertical, and © denotes the cyclic sum of over the hovizon-
tal vector fields X, Y, Z, then

e{(V A Y, V) = 6{ ALY, Ty Z).

Proof. Since this is a tensor equation, we can assume that X, Y, Z are basic,
and even that all three brackets [X, Y], --- are vertical (since this can be achieved

at a single point). Thus, by Lemma 2, %—[X, Y] = Ax Y, so that

%([[X, v], z], v) = {[A, Y, 2], V) = (VAXY(Z), V) - {9, (AL Y), V),

where V is vertical. But
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(Vagy @, V) = {1, _y(@), V) = -{Z,T, ;)

Il

-2, TYALY)) = {TyZ, AL Y).

Hence, by the Jacobi identity, 6( V, (A Y), V) =6 (TV Z, AXY>. Thus it remains
only to show that &{V,(AxY), V) = &{(V,A) Y, V). But

®)  (VzaxY), V) - {(VzA)xY, V) = Ay, x(¥), V) + (Ax(V, V), V).
Basic properties of A show that the first term on the right equals

-(Ay(#Y,X), V),

and since we assume that [X, 7] = 0, this becomes - (AY (JKVX Z), V> , from which
the projection # may now be deleted. Thus, when & is applied to equation (*), we
obtain the required result.

4. FUNDAMENTAL EQUATIONS

For a submersion 7: M — B we now derive the equations analogous to the Gauss
and Codazzi equations of an immersion. These are found by applying previous re-
sults to the second structural equation of M. Five equations result, which we num-

ber as {n}, where n=0, 1, 2, 3, 4 is the number of horizontal vectors in the curva-
ture tensor <RE1 EZ(E 3,), E 4> —the others being vertical. The order in which hor-

izontal and vertical vectors are interspersed is not essential; because of the sym-
metries of the curvature tensor, the five equations will completely determine the
curvature of M.

The first two equations relate the geometry of M to that of the fibers m-1(b);
they are simply the Gauss and Codazzi equations of the fibers. I v, v,, v3, vy

are vertical vectors at a point m € M, let <ﬁvlv2(v3), v 4> be the curvature tensor
of the fiber 7-1(7(m)) at m.
THEOREM 1. If U, V, W, F are vertical veclor fields and X is horvizontal, then

{o}  (RyyW, F) = (RyyW, F) - {TyW, T, F) + (T, W, T, F),
{1} (Ryy W, X) = {(Vy D)y W, X) - ((VyT)yW, X) .

The proof is the same as for a single submanifold.

Now we turn to the pair of equations relating the geometry of M and B; these
are in a sense the duals of the Gauss and Codazzi equations above. The horizontal
lift of the curvature tensor R* of B will also be denoted by R*; explicitly, if
h;, h,, hy, h, are horizontal tangent vectors to M, we set

<R*h1hz(h3)’ h,) = <R*h1*hz*(h3*)’ hyx) s

where hy = 7, (h;).

THEOREM 2. If X, Y, Z, H are hovizontal vector fields and V is vertical, then
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(e} (RyyZ, H) = {R¥yy Z, H) - 2{A4Y, A, H)
+{AyZ, AxH) + (A X, AyH),
5} (RyyZ, V) = {(V, A Y, V) + (ALY, T, Z)

-{AyZ, TyX) - (A,X, T Y).

Proof. Since {4} and {3} are tensor equations, we can assume that X, Y, Z
are basic vector fields whose brackets are vertical. Making repeated use of Lemma
3, we compute each term of

Because of the bracket condition above, Lemma 1 implies that [X, Y] = 2Ax Y. Thus
we deduce from Lemma 3 that

(2) Vix,y 2 = 287 (AxY) + 2T, y(2).

In view of Lemma 1, we write the basic vector field #VyZ as V*y Z. Thus
VyZ =V*yZ+ AyZ, and another application of Lemma 3 yields the equation

(3) VxVyZ = V¥ V¢ Z + Ax(V¥v Z) + AxAvy Z + VVx(Av Z).
Combining the three equations, we obtain the relations

(4) HRyyZ = -[Vry, VA ]Z+2A, ALY -AL A Z+A A7,

(5) VRyyZ = 2T, y(Z) - ¥Vx(Ay 2) + ¥Vy(Ax Z) - Ax(V¥y Z) + Ay (V¥ 7).

By Lemma 1 and the definition of R* (preceding this theorem) the second struc-
tural equation of B lifts to M in the form

Rty Z = VX Z - [Vxg, vx,12Z.

H[X,Y]

We have arranged that #’[X, Y] = 0; thus the first term on the right in (4) is simply
R*yy Z. Taking inner products, in this equation, with the horizontal vector field H,
we obtain the dual Gauss equation {4}

Taking inner products in (5) with the vertical vector field V, we find that
| (RxyZ, V) = 2(Ta, v(2), V) - {Vx(Ay 2), V) + {Vy (Ax 2), V)
(6

- ALV 2), V) + (Ay(VyZ), V).

But in the proof of Lemma 7 we saw that
(7) <TAXY(Z), V) = {T,2, A Y).
Furthermore,
(Vyax2), V) - {Vx(ay Z), V) = {(Vy A)xZ, V) - {(Vx Ay Z, V)

(8)
+ {A(Vy Z), V) - (AL(VyZ), V).



THE FUNDAMENTAL EQUATIONS OF A SUBMERSION 465

(Two terms cancel, since [X, Y] is vertical.) Substituting (7) and (8) in (6), we find
that

(RyxyZ, V) = {(VyA)xZ, V) - ((VxA)yZ, V) +2{A Y, T, Z) .
In view of Lemmas 6 and 7, this equation is equivalent to the dual Codazzi equation

{3} as stated above. A priori the latter seems preferable, since it contains only a
single covariant derivative.

We now state the last of the five equations.

THEOREM 3. If X and Y are horizontal vector fields, and V and W are verti-
cal, then

(Ryy ¥, W) = (VD W, Y) + {(Vy A ¥, W)
~{Ty X, Ty Y) + (AL V, A, W) .

We omit the proof, which follows the same lines as that of the preceding theorem.

12}

The symmetries of curvature lead not only to new formulations of these equations,
but also to identities involving the covariant derivatives of T and A. For example,

application of {2} to the symmetry {RyyY, W) = {RyyX, V) gives such an -
identity; and this, combined with the cyclic symmetry of curvature, leads to an
alternative formulation of {2}:

(RywX, Y)Y = (V4 A)x Y, W) - {(Vy A Y, V) + (A, V, A W)
- (AxW, Ay V) - (TyX, Ty Y) + {TyX, T, Y.

In the case of sectional curvature, these results become quite simple. If a and b
are tangent vectors (tacitly assumed to be independent), the tangent plane they span is
denoted by P, .

. COROLLARY 1. Let m: M — B be a submevrsion, and let K, K, and K be the
sectional cuvvatures of M, B, and the fibers. If x and y arve horizontal vectors at a
point of M, and v and w are vertical, then

(TVV, TWW> - "TVWHZ
lv A wl2
2. K0, ) [x]? [v]2 = (7,1, v, x) + [a vl? - |7 x0%

{2'}

1. K(P, ) =K@, )-

’

3. K(ny) = K*(Px*y*) - W , wheve X, =, (x).

The first equation here is one formulation of the Gauss equation for the fibers;
we shall see in the next section that the third often gives a quite efficient way of
computing the sectional curvature of B.

We might just as well have worked with pseudo-Riemannian manifolds; but note _
that in the Riemannian case, equation (3) shows that submersions are curvature-
increasing (more precisely, nondecreasing) on horizontal tangent planes.
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5. EXAMPLES

We apply the results above to three familiar situations; for brevity, we compute
only sectional curvatures.

Complex projective space. Let N be the outward unit normal on the unit sphere
S2ntl ¢ R2nt2 = Cntl | If J is the natural almost complex structure on Cntl, then
the integral curves of the tangent vector field JN are great circles in S2n+l that
are the fibers of a bundle mapping 7: S2ntl — CPn onto complex projective space.
The usual Riemannian structure on CP" is characterized by the fact that 7 is a
submersion. Since the fibers are geodesics, the tensor T vanishes. The tensor A
can be described as follows: If X and Y are horizontal vector fields on S2ntl (that
is, orthogonal to JN), then

AyY = (X, IY)IN, Ay (N) = JX.

In fact, Ax(JN) = #Vy(IN) = #IJVy N =5#IX = JX. (The distinction between covari-

S'Z n+l

ant derivative of and of C™! jg irrelevant here.) Hence

(A Y, aND) = - {¥, Ag(dN)) = -(¥,ax) = {X,3Y).

If X is a basic vector field on S2n+1 | then so is JX. This determines the usual
almost complex structure on CP". It now follows from equation (3) of Corollary 1
that the sectional curvature of a plane PXY tangent to CP™" is

1+3(x, Iy ) 2/|xAy|?.

A Riemannian homogeneous space G/K. Suppose for simplicity that G is a Lie
group furnished with a two-sided invariant Riemannian structure. If K is a closed
subgroup, then the usual Riemannian structure on G/K is characterized by the fact
that the natural mapping 7: G — G/K is a submersion. The fibers (left cosets of
G mod K) are totally geodesic; hence T = 0.

Now suppose that X and Y are left-invariant horizontal vector fields on G, in
other words, that X and Y are in &', where & C ® are the Lie algebras of

K C G. By Lemma 1, Ay Y =2%[X, Y] € &, and it is known that
K(P) = 5 %, Yl|2/|x A |2

for planes P spanned by X and Y. Then for the planes P, = 7,(P) tangent to G/K,
Corollary 1 shows that sectional curvature is given by the well-known formula

| oelx, YII% + [vix, v1]%.

K, () |x AY[? = 2%, ¥+ 3 |vIx, 1|2 = ;

1
4
The frame bundle ¥(B) of a Riemannian manifold. F(B) is a principal bundle

over B with structural group O(n); we identify the elements of the Lie algebra o(n)
with skew-symmetric matrices, and use the inner product,

(a, b) = - trace ab = Z) 2 bij .
i,j



THE FUNDAMENTAL EQUATIONS OF A SUBMERSION 467

Then there exists a natural Riemannian structure on F(B) such that the projection

7: F(B) — B is a submersion. To define it, let w be the Riemannian connection form
on F(B) —values in o(n) —and let <# = kernel w be the Riemannian connection on
F(B). If v is a vertical vector and w(h) = 0, define

vl = le@l,  (wn)=0, |u] = |rm].

Evidently 7 is then a submersion with &¢ as its horizontal distribution.

A straightforward computation shows that the fibers are totally geodesic; there-
fore again T = 0. To compute A, recall that if X and Y are horizontal vector fields
on F(B), then (with one set of conventions) w([X, Y]) = -Q(X, Y), where Q is the
curvature form of B on F(B). Hence, by Lemma 2, if x and y are horizontal vec-

tors, A_y is the vertical vector such that w(A,y) = ——;-Q(x, y). If x, y, and a verti-

cal vector v are all tangent to F(B) at f=(f;, -, fn), we compute A_v as follows.
First,

(A7, 7Y = (v, Ayy) = - {0), oA ) = 5w, 2x )

1 Z)wu(v) Qi5(x,5) = -5 Ewl_](v) <R*f £ (x4), Y*>

i,j i,j

where, as usual, x, = 7,(x) and R* is the curvature tensor of B. Since R*,; is al-
ternate and b11mear in s and t, the curvature operator R, is well-defined for any
2-vector @ in A2 By (). The vert1ca1 vector v determines such a 2-vector, namely

a(v)=2J wy; (V) AL ;- Thus the equations above imply that A, v is the horizontal

vector at f such that w (A, v)= - —;-R*a(v)(ﬂ* X).

We now use Corollary 1 to determine the sectional curvature K of the frame
bundle F(B). In the notation of that corollary, we find that

K(P,,) = 7 | [0@), o@]|2/]v Aw|?,
K(P,,) = 7 [R*a) )2/ x]2 [v]2,

K(P, ) = Ky(P, ) - o] RE 3 N7 1A yl%.

In the first of these, we are using the curvature formula referred to in the preceding
example, since O(n) is isometric to each (totally geodesic) fiber. In the last formula,
the norm of the curvature operator is that of its matrix - Q(x, y).

6. INFLUENCE OF THE FUNDAMENTAL TENSORS

We shall now prove two results; the first shows that the tensors T and A control
a submersion 7 in the sense in which the second fundamental form determines an
immersion.
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THEOREM 4. Le! 7 and T be submevsions of a connected Riemannian manifold
M onto B. If m and © have the same tensors T and A, and if their devivative maps
agree at one point of M, then 7 = 7.

Proof. Let D be the set of points m in M for which T = Ty (hence also
7(m) = 7(m)). Evidently, D is a closed set in M, and since M is connected, it suf-
fices to prove that if p is in D, then 7 = 7 on some neighborhood of p in M. We
shall carry out this proof by showing that 7 is completely determined on such a
neighborhood by T, A, and 7, _. Note that the latter gives the horizontal and verti-

cal subspaces Hp and Vg of MP'

A curve a in a fiber of 7m: M — B is a geodesic of the fiber if and only if
a" = T,(a'), where @' is the velocity of @, and where a" is its M-acceleration.
Conversely, consider the set of all curves @ in M that solve the initial value prob-
lem

a" =Ty (a'), a'(0)e ‘I/p.

For each prescribed value of @'(0), the solution is unique; thus these curves are the
geodesics in 7-1(n(p)) starting at p. Consequently, their images fill a convex neigh-
borhood F of p in this fiber.

Next let X be a vector field defined only on F, but with values tangent to M. If
X is basic, then by Lemma 3,

VyX = AgV+TyX, Xp)e x,

for each vertical vector field V tangent to F. Conversely, the vector fields X sat-
isfying this condition are exactly the basic vector fields on F; this follows if we
apply Lemma 3 to show that V X, X> =V <X, Y) = 0 for each basic vector field Y.

Now let N(F) be the normal bundle of F C M, and let E: N(F) = M be the ex-
ponential map. Since E is regular at the zero vector OP, the image of E is a neigh-
borhood F of p in M. To show that T, A, and 7, completely determine 7 on this

neighborhood, we suppose that m is a point of ﬁ, so that it may be written as

m =y,(1), where x is normal to F (hence horizontal) and 7y, is the geodesic with
initial velocity x. The arguments above have shown that T, A, and ﬂ*P determine
F and the basic vector fields on F; but if X is the basic extension of X, then

7,(x) = 7,(X(p)). Finally, we use a fact established in [1] and [2]: if B is a geodesic
of M such that B' is horizontal at one point, then B' is everywhere horizontal and
mofB 1is a geodesic of B. It follows that

m(m) = 7 (v, (1) = vy (x) (1) = expy(,) (1,(X(p))),

and the proof is complete.

The simplest type of submersion is the projection of a Riemannian product mani-
fold on one of its factors. We shall say that a submersion 7: M — B is {7ivial pro-
vided it differs from such a projection only by an isometry of M. Equivalently,

7: M — B is trivial provided there exist a Riemannian manifold F and a submersion
¢: M — F dual to 7 in the sense that the horizontal distribution of ¢. is the vertical
distribution of 7 (hence vice versa). Our goal now is a necessary and sufficient
condition for a submersion to be trivial. Vanishing of both T and A is certainly
necessary; however, this local condition is not sufficient, as one can see, for
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example, from the projection of a flat MObius band onto its central circle. To find a
suitable global condition, we recall some results due to Hermann [1]. I = M — B
is a submersion and M is complete, then B and the fibers are also complete. In
this case, if y: [a, b] — B is a geodesic segment (possibly broken) in B, then for
each point m lying over y(a) there exists a unique horizontal lift y™: [a, b] - M of
v such that y™(a) = m—and y™ is also geodesic. The function

¢,: 171 y(a)) ~ 771 (y(b))

such that ¢ (m) = y™(b) is a diffeomorphism. Furthermore, if T =0, then ¢y is an
isometry. KIOW fix a base point o in B. The set of all the diffeomorphisms

: m-1(0) — 7-1(0), where y is a geodesic loop at o, forms a group G that we call
the group of the submevsion.

THEOREM 5. Let w: M — B be a submevrsion of a complete Riemannian mani-
Jold M. Then w is trivial if and only if the tensor T and the group G of the sub-
mevrsion both vanish.

Proof. The necessity of the conditions is obvious; to prove the sufficiency, let
F =7-1(0) (0o € B). By the definition of the diffeomorphisms ¢y, the vanishing of G
means that for each m € M, every horizontal geodesic from m to F -ends at the
same point of F, say ¢(m). It is easy to verify that ¢ is differentiable; we assert
that ¢: M — F is a submersion dual to 7. In fact, this is a consequence of the fol-
lowing two remarks:

(1) The restriction of ¢ to any fiber 7~-1(b) is a mapping ¢y, of the type defined.
above; furthermore, since T = 0, this restriction is an isometry onto F.

(2) If h is a w-horizontal vector, then by an earlier remark the geodesic yy,
with initial velocity h remains horizontal. Thus from the definition of ¢ we can
deduce that the curve ¢oy), is constant, hence ¢, (h) = 0.
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