PROJECTIVE AND INVERSIVE MODELS FOR
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1. INTRODUCTION

A finite hyperbolic plane # 1is a collection of points, together with certain
distinguished subsets called lines, satisfying the following conditions (see [6], [7]):

H.1 Two distinct points are contained in exactly one line.

H.2 If P is a point not contained in line ¢, then there exist at least two lines
containing P and not meeting (.

H.3 If a subset & of the points of &# contains three points not on a line and
contains all points on lines through pairs of distinct points of &, then &
contains all the points of .

A number of examples of such planes have recently been given [1], [6], [7], [8], [9].
In particular, it is shown in [1] that, with suitable identification of inverse points, the
circles tangent to a given circle in the classical inversive plane over GF(2!) yield a
model of a finite hyperbolic plane. One purpose of the present note is to extend this
result to GF(pt) (p an odd prime) with “orthogonal” replacing “tangent”. The recent
results of Dembowski and Hughes [5] show that the inversive planes over GF(pt) (p
odd) are exactly the abstract inversive planes of odd order with orthogonality.

Hence we derive our model in the context of abstract inversive planes with orthog-
onality. Since abstract inversive planes of even order necessarily have an orthogo-
nality relation, namely tangency, the model derived in the present paper includes as
a special case the hyperbolic planes described in [1] and [2].

For the case of odd order, an isomorphism is established, in Section 3, between
the present inversive model of a hyperbolic plane and Ostrom’s projective model.
In Section 4 we include the special calculations needed for planes of order at most 7.

2. THE MODEL

An abstract inversive plane & is a collection of points and certain distinguished
subsets of points called circles, satisfying the following three conditions:

I.1 Three distinct points are contained in exactly one circle.

1.2 If c is a circle containing point Q but not point P, then there exists
exactly one circle d containing P and tangent to ¢ at Q. (By definition,
two point sets are fangent if and only if they have exactly one point in
common.)

1.3 There are at least two circles. Every circle contains at least three dis-
tinct points.
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It can be verified by simple counting methods [4] that if one circle contains
exactly n+ 1 points, then every circle contains exactly n + 1 points, every pair of
points is contained in exactly n + 1 circles, and there are exactly nZ + 1 points in
<. The number n is called the order of #.

An inversive plane with ovthogonality is an inversive plane ¢ together with a
relation ¢ L d between the circles of # satisfying [5] the following requirements.

O.1 If c Ld,then d L c.

0.2 If P and Q are different points and if ¢ is a circle containing Q, then
there exists exactly one circle d such that P and Q are in d, and
c 1Ld.

0.3 If a and b are different circles, each containing two distinct points P
and P*, andif a L ¢ and b L c, then x L ¢ for all circles x containing
P and P*.

Dembowski and Hughes [5] have shown that in case n is even, the only possible
orthogonality relation ¢ 1 d is the following: ¢ =d or c is tangent to d. For the
proof of the following result, see [5, p. 176].

LEMMA 1. The circles containing a given point P and orthogonal to a given
civcle ¢ (not containing P) are exactly the n+ 1 circles through P and some other
point P* ¢ c.

For any fixed circle ¢ in an inversive plane & of order n (n > 7), we now con-
struct a hyperbolic plane ¢.(.4). By Lemma 1, each point P ¢ ¢ determines a
unique point P* contained in each of the n + 1 circles orthogonal to ¢ and contain-
ing P. The points of #.(F) are the pairs P= {P, P*} (P ¢ ¢c). A line ¢ of
H.(F) is the set of all pomts = {P, P*} for which P lies on the circle ¢ or-
thogonal to c. The verification of axioms H.1 to H.3 follows:

H.l. Let P={P, P*} and Q= {Q, Q*} be two distinct points. The n+ 1
circles through P and Q include all points of &, in particular P*, The unique cir-
cle £ containing P, P* and Q is orthogonal to ¢, by Lemma 1. Hence { contains
Q*, and ¢ is the required line determined by P and Q.

H.2. Since each circle ¢ L ¢ contains exactly n+ 1 points, the corresponding
line ¢ of o#.(¥) contains (by identification in pairs of those points of ¢ that are
not on c¢) at most (n+ 1)/2 points of &#.(.#). However, at each point P ¢ £ there
are exactly n+ 1 lines, by Lemma 1. Hence at least (n +1) - (n+1)/2> 2 of them
fail to meet ¢, as required.

To prove H.3, it is convenient to establish the following extension of an observa-
tion of Szamkotowicz [10, Theorem 3.1]. In an incidence structure ¥ satisfying H.1
and H.2, we denote by k the minimum number of points on a line, and by m + 1 the
maximum number of lines containing any point.

LEMMA 2. If H.1 and H.2 ave satisfied in an incidence stvucture 4, and
k(k - 1) > m, then H.3 is satisfied in @.

Proof. Let P, Q, R be three noncollinear points of a subset & of points of ¢
having the property that if any line contains two distinct points of &, then all its
points are in &¥. & contains at least the k_points of line PQ and hence the
k(k - 1) + 1 distinct points on lines joining R to points of PQ. Now each point T of
¢ is on at most m + 1 lines. Hence if k(k - 1) + 1> m + 1, then at least one of the
lines containing T must contain (at least) two points of . Hence all the points of
this line, in particular, T, are in ¥, as required.
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(We remark that in a weak sense, Lemma 2 is a best possible result. That is,
there exist incidence structures that satisfy H.1, H.2, and the condition k(k - 1) = m,
but fail to satisfy H.3. Indeed, consider a projective three-dimensional space with k
points on each line. In this space there are (k - 1)2+(k-1)+1=k(k - 1)+ 1 lines
containing each point; therefore m = k(k - 1). It is easy to see that H.1 and H.2
hold, but not H.3.) ‘

Proof of H.3. For o (%) we know that m =n. If n is odd, then k = (n - 1)/2.
Hence, by Lemma 2, we need only ascertain that

%(n _ 1)[%@ 1) - 1] > n,

which is the case whenever n > 7. If n is even, then k = n/2, and the condition
%(% - 1) > n holds whenever n > 6. (In fact, H.3 also holds if n=2, 3, or 7. The

cases n < 7 are treated in Section 4.)

3. ISOMORPHISM OF INVERSIVE AND PROJECTIVE MODELS

In this section, n is always odd. In a projective plane %, of odd order n (that
is, with n + 1 points on each line), an oval consists of n+ 1 points no three of
which are collinear. The inlevior points of an oval q are the points of &, contained
in no tangent line of q. Ostrom [7] has shown that if n > 7, the interior points of an
oval q in &2 constitute the points of a finite hyperbolic plane # q(g’z) whose lines
are the intersections of the lines of &, (not tangent to q) with the set of interior
points of q. Thus every line of o 4(#>) contains exactly (n - 1)/2 or (n+1)/2
points, depending on whether the corresponding line of &, meets ¢ (in two points)
or fails to meet q. This suggests an isomorphism (which we now establish) between
the inversive model of Section 2 and Ostrom’s projective model.

Let 2 be a quadric in a projective three-dimensional space %3 of odd order n.
Let P? and 7% be the plane and the point corresponding to the point P and the plane
m, respectively, in the polarity ¢ induced by 2. A plane section a of /(2 is non-
trvivial if it consists of more than one point. Let 7, denote the plane defining such a
plane section a, so that a =7, N 2. Dembowski and Hughes [5] have shown that any
inversive plane < (of odd order n) with orthogonality is isomorphic to an inversive
plane #(2) consisting of the points and (nontrivial) plane sections of 2. Moreover,
under this isomorphism, nontrivial plane sections a and b of 2 correspond to or-

thogonal circles in & if and only if 772 € 7. That is, an orthogonality relation sat-
isfying O.1 to O.3 is defined in #(2) by the condition

(0) a L b if and only if 112 €.

Under this isomorphism, each hyperbolic plane derived from a circle of 4 cor-
responds (isomorphically) to a hyperbolic plane o¢.(2) derived from a plane section
c of 2. Let N= 7725 be the pole of the plane #_ of the fixed plane section c. The
carriers of the lines of JKC(Q) are the plane sections of 2 orthogonal to c¢c. By
relation (0), they all lie in planes through N. Of these planes, those containing a
given point P ¢ ¢ of 2 contain the entire line PN. Hence they also contain the
other point of intersection of PN with 2. This point is the P* of Lemma 1. That
is, the points of s#_(2) are the pairs P = {P, P*} that are the complete intersec-
tions with 2 of nontangent lines to 2 from N.
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Now let X' denote the image in the fixed plane 7, of the point X € £ under pro-
jection from N;j that is, let X'=NXN 7. Denote by a' the set of images of points
X of a nontrivial plane section a of 2. Clearly, ¢' =c isanovalin 7_. If d is
orthogonal to c, then d' is contained in a line of 7, since N € 7 4. In fact, if
Ped(and P 9{ c¢), then P'= P*' is an interior pomt of ¢' in 7. That is, there
exist no tangents to c' that contain P!, for all the tangent lines to c¢' (in 7_) are
images of planes fangent to 2 at points of ¢, and hence can contain no points P'
corresponding to points of 2 not on c.

Under this projection, both the components P and P* of a point P of #x.(2)
project onto the same interior point P' of ¢ in 7n.. Hence a one-to-one correspond-
ence between points P of #.(2) and interior pomts of ¢ in 7. is defined by
7: P={P, Px} — P'. The image 7{ of any line T of o#.(2) is then the intersec-
tion of a line of 7. with the set of interior points of ¢ in 7. Incidences are ob-
viously preserved under 7. Thus 7 gives the desired isomorphism between #.(2)
and one of Ostrom’s models of a finite hyperbolic plane in the (necessarily Desar-
guesian) projective plane 7.

4. THE CASES n <7

For completeness we include a proof that, in fact, condition H.3 fails if n=4 or
5 and holds for all other admissible (that is, prime power) values of n < 7, namely

for n=2, 3, or 7.
Is

For n =2 there is only one point in s#_.(#), and for n = 3 there are only three
points. Hence H.J3 is satisfied trivially in these cases.

For n =4 there are exactly six points and 15 lines. Each line contains exactly
two of the points. (That is, the points and lines are the vertices and edges of the
complete graph on six vertices.) Any set & consisting of three noncollinear points
has the property described in H.3, But <#.(¥) contains six points. Hence
¥ + # . (F), and condition H.3 fails to hold.

For n =5 there are ten points. It is possible to choose a set & of four points
P, Q, R, S with the properties that

P, Q, and R are noncollinear,

S lies on line QR,

the lines PQ, PS, and PR each contain only two points, and
the line QR contains only three points.

Thus & has the property described in H.3, but & # o¢ (J ). Hence H 3 fails to hold.
(Explicitly, consider Ostrom’s model, W1th ¢ the conic xZ + 2y + 4z2% = 0 over
GF(5). The interior points of c¢ are those points (X3, g, ) for which

x% + Zyg + 42{2) is a nonzero square in GF(5). Then the points

=(,1,1), Q=(3,31), R=(23,1), S=(,0,0)

satisfy the conditions just described.)

For n =7 we shall show that any set & satisfying the conditions of H.3 contains
at least nine points. Since each point T of o _.(4) is on exactly eight lines, this
shows that at least one line containing T contains at least two points of &. Hence
(by the definition of &) T € &, and H.3 is satisfied.
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Let P, Q, R be three noncollinear points of &. Then, since there are at least
three points on each line, & contains at least three other points, say S, U, V, on
lines QR, PR, and PQ, respectively. The line PS contains another point, say W, It
can be readily verified that if none of the lines VR, UQ, or UV contains a new point
of #.(#), then these seven points of &, together with the seven lines determined by
them, constitute a Fano configuration. By the isomorphism established in Section 3,
this implies the existence of a Fano configuration in the Desarguesian projective
plane coordinatized by GF(7), which is impossible.

Hence at least one of the lines VR, UQ, or UV contains a new point X of s#.(#).
If X ¢ PS, then line PX contains a third point Y that is different from the eight
points already enumerated. Hence & contains at least nine points, as required.

If X € PS, there are three cases:
(i) X e VR, (ii) X € UQ, (iii) X € UV.

In case (i), either WQ or XQ contains a new point, as required. Likewise, in case
(ii) either WR or XR contains such a new point. In case (iii), line RX contains a
new point, as required. This completes the proof that & always contains at least

nine points and hence that H.3 holds.
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