A GENERALIZATION OF THE BIEBERBACH COEFFICIENT
PROBLEM FOR UNIVALENT FUNCTIONS

M. S. Robertson

1. INTRODUCTION

Let S denote the class of functions

(1.1) F(z) = 27 A, 2"

n=1

that are regular and univalent in the unit disc E(z: Izl < 1). The Bieberbach con-
jecture is the assertion that the coefficients A, satisfy the inequality

(1.2) Al <nla] @=23 ).

This conjecture is known to be correct for n = 2, 3, and 4. Recently, Hayman [2]
showed that

(1.3) llAn+]_| - |An|l <Ala)] @=23 ),

for some constant A independent of ¥(z). About the same time, Pommerenke [7,
Theorem 4] established (1.3) with A < 3e2/ 4, for the subclass of S consisting of
functions that are close-to-convex in E. (A function is close-to-convex if there

exists a starlike function g(z) = ET b,z™ such that

z F'(z)

(1.4) w2

>0

in E; see [3], where the definition is given in terms of a convex auxiliary function.)
Pommerenke further showed [7, Theorem 4] that if F(z) is close-to-convex, but not
convex in one direction [9], then there exists a 6 = 6(g) > 0 such that

(1.5) |Ania| - |AL] = 0(1/n%).

In particular, if F(z) is starlike in E and (1.5) is not satisfied, then F(z) must be
of the form

(1.6) F(z) = A,z(1 - slz)'l(l . azz)'l,

where [sll = |82{ =1.

An inequality stronger than either of the inequalities (1.2) and (1.3) is the asser-
tion that
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1) | 180l - m]agl| < n2-m?|-]a,]

for all nonnegative integers n and m (convention: Ay = 0). If (1.7) were true, then
(1.2) would follow from it. We can see this in two ways by putting m = 0 or
m=n-1. If we set m =n - 1, then (1.7) implies the inequality

(1.8) n|A| < @Cn-1)]A|+@-1)]A, 4]

Then (1.2) follows from (1.8) by induction. However, (1.8) is obviously a stronger
assertion than (1.2).

For m =n - 1, (1.7) is equivalent to the assertion

< (2-3) 14y,

so that (1.3) would follow from (1.9) and the known inequality |A,_;| <e|A;|(n - 1)
(see [4]).

At this time we have hardly enough evidence to justify the conjecture that (1.7) is
true for the whole class S, although this interesting possibility at least suggests it-
self. Support for the suggestion is given in this paper. We show that (1.7) is satis-
fied if F(z) is convex in one direction, or if F(z) is close-to-convex and m - n is an
even integer. Each of the two subclasses of S contains the Koebe function
z(1 - gz)-2 (Ia] = 1), so that (1.7) is sharp. From (1.7) we obtain an improved
estimate for the constant A in (1.3), for the subclasses of S under discussion.

1
(1.9) laL] - 1A, ]+ 1A,

2. FUNCTIONS CONVEX IN ONE DIRECTION

Definition. Let £(z) be regular and univalent in E(z: Iz] < 1), and let f(z) map
E onto a domain G. We call f(z) convex in one divection in E if G consists of the
union of parallel rectilinear segments with not more than one segment on any one
straight line.

THEOREM 1. Let {(z) = Z}T anzn be regular and univalent in E(z: Izl <1)
and map E onto a domain G convex in one divection. Let n and m be nonnegative
integers. Then

|nlag| - mlagl| < |02 - m?|-|a,],

wheve ay=0. Equality is attained for the function a; z(1 - £z)"2, where |s| =1,
Proof. It is sufficient to prove Theorem 1 for the special case m =n - 1, and
we may assume a; = 1. For in the general case, with m < n, the theorem for the
special case then gives the inequalities
m-17-0"< nla) -@-1Day,]  <0®-@-1)7%
Mm-2°-0-1"<@-Da ,]-0-2]|a | <h-1)°%-@- 272

------------------------------------------------

mé-m+1)?%< m+1)fa_,|-mla, | < (m + 1) - m?.
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By addition, we deduce that

'n|an| —m]amll < n® - m? .

In the proof, we may also assume that f(z) is continuous on |z| =1 and that G
is convex in the direction of the imaginary axis. The circle Izl =1 then consists of
two arcs E; and E, such that %£(z) is nonincreasing on E; and nondecreasing on
E,. The general case, where f(z) is not assumed to be continuous on |z| =1, is
taken care of by approximating the domain G by a sequence of domains
G; G, C -, where lim_ _,, G,=G and 0 € G, and where the domains G, are
convex in one direction and are bounded by Jordan curves. For a proof, see for ex-
ample de Bruijn [1].

For each G,, the corresponding mapping function w = f,(z) taking E onto G,
may be uniformly approximated by the associated de la Vallée Poussin polynomials

ggi)(z) of degree m:

lim gi?(z) = 1, (2),

m —> ©0

where g(nrnl)(z) is convex in one direction in E and regular on |z| =1, for all m [6,

p. 318]. In the proof of Theorem 1 we may assume then that f(z) is not only con-
tinuous, but even analytic on [zl =1. We take a; = 1, for simplicity.

With this assumption it follows [9, p. 467] that there exist real numbers g and v
and an analytic function F,(z), with %F;(z) > 0 in |z| < 1, such that, with the nota-
tion q(z) = zf'(z),

z F(z)
(1+iei’z)(1+ie"iVz)

q(-iett z) =

We may then write q(z) in the form

ie”i gz Fi(ie i z) _ i(g; 82)1/22 P(z)
(1 - eiV-1)g)(1 - e-ilvt) 5) ~ (T -¢, 2)(1-¢,2)’

q(z) =

where €, = ei(”"”'), £y = e“i(V"'“), P;(0) = -i/(e; 82)1/2, and %P,(z)> 0 in E.
P,(z) is regular on |zT < 1. Thus

R {ei')’ Zf('z(f)} >0  (|z] <1)

for el = - i/(eq 82)1/2 , where t(z) is defined as

oo Sn I’:‘lfl
= Z = E n :_Z_—___].'_ - = n'l
We note that ]cn - g cn_ll =1, since Isll = Iazl = 1. Now let

. 1
elyg,c—f(% = P(z) cos y +isiny,
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where P(z) is analytic in E, P(0) =1, and % P(z) >0 in E. Let P(z) = Z):)o pnzn,
where p, = 1. Then |pn| < 2. It now follows that

nan Cn + cos Y e_ly (pl Cn_l + Py Cn_z + e+ pn_z CZ -+ pn-l) ,
(mn-1)a,_; =c,_; +cosy e (pychp Dy, 3+ +p, _5),

Ina, -e,(n-1)a,_;|

n-2
< e, - 3] cn-1| +cos ¥ (|Pn-1| + 12 lpkl Icn-k - Slcn-k-ll)

n-~-1

<l+cosy 2o |pk| <1+(@2n-2)cosy <2n-1,
= I = S

lnlanl -(n-1)|a _1|| < |Ina_ -e;(n-1a_ ;| <2n-1=n?-(@n-1)?3,
which was to be proved.

THEOREM 2. If 1(z) = E;o a,z" is rvegular and univalent in E(z: |z| < 1) and
maps E onto a domain G convex in one divection, then

(-3+2) |ay] < fay] - |2yl < (2-2) |2yl @=23, ).
Proof. Let m =n -1 in Theorem 1. Then we have the inequalities
-(n -1 a;| <nfa | -@-1]a, ;| < (@n-1)]ay],
n -1 Jay] - lag | <nlagl - lay 1D < G- Dlay] - ay].
Since |a, ;| < (n-1)|a;| (see[9]) we see that
-(3n - 2) |a;| < n(lay| - |a,;]) < @n-1)]ay],

and the desired inequality follows when we divide by n.

3. CLOSE-TO-CONVEX FUNCTIONS

THEOREM 3. Let f(z) = Z}Olo a,z" be vegular, univalent, and close-to-convex
in E(z: |z| < 1), and let m and n be nonnegative integers such that n - m is even.
Then

|nl2a] - mlam|| < n% - m2[-|a,].

Equality holds for the functions a;z(1 - £2)™% (Je| = 1).
Proof. We may assume that a; = 1. Since i(z) is close-to-convex in E, there

exist a real number a (|a| <7/2) and a function g(z) =z + Eozo b,z", regular,
univalent, and starlike in E, such that [3]
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ia 2£'(z)
(3.1) ae{eaz—g(—z‘f—}}_o (|z] <1).

We may assume that f(z) and g(z) are regular for |z| < 1. Otherwise, for
0 <t <1, we define

F(z) = %f(tz), Glz) = tlg(tz).

Then G(z) is regular and starlike in |z| <1, and

gt{eiaﬁg(_'g_)}zo (z € E).

It follows that F(z) is regular and close-to-convex for |zl <1

Since g(z) is regular and starlike for |z| < 1, it is in particular starlike in the
direction of its diametral line [5], [10]. For a suitable real constant B, we may
represent g(z) in the form

(3.2 6 = PheB2) = 5+,

where h(z) is starlike with respect to the origin and has the real axis as its dia-
metral line. However, in this case there exists a function P(z), analytic for |z| <1
with P(0) =1 and %P(z) > 0 in E, such that

z P(z)

(3.3) h(z) = T2

(z € E).

From (3.1) we also deduce that

i 21'(2) _ e
(3.4) e =) P,(z)cos a +isina,

where P;(0) =1 and % P;(z) >0 in E. Since |a| <u/2, it follows that cos a > 0.
From (3.2), (3.3), and (3.4) we obtain the relation

e i P(e_iBz)(Pl cosa+isina) 1+cyz+e, 72 4 .-

(3.5) f'(z) =

1 - e-2if 52 1 - e2iBz2
Let
o0 fee)
P(e'iBz) =1+ Zl> q, 2", e'io‘(Pjl cos @ +isina) =1+ 2 rnzn.
1

Since % P(z) > 0 and %P;(z) > 0 in E, it follows that |q,| <2, |r,| <2
(n=1, 2, ---). Therefore

le.| = |r +ayr, ;+--+q, T, +q,| <2+4+-+4+2 = 4n.

By (3.5),

(1 - e'ZiBzz)(? nanzn'l) =1+2¢c z°,
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|n+1)a,,; -e2Bm-1)a__,| = le,| < 4n,
and
(3.6) |+ D gl - - Dag,yl| <t = @+12-@- 12
m=1,2 +;a5=0, a; =1).
If m is any nonnegative integer (m'<n) and m - n is even, then
(n - 2)% - n® < n |a,]| -(n-2)]|a,_,| Snz—(n-2)z,

m-4°-m-2%<m-2a, ,| -m-4|a_,| <@©-27%-@0-4?,

mz—(m+2)25(m+2)|a mlam| S(m+2)2-m2‘.

m+2| -

By addition we obtain the inequality in the theorem.

THEOREM 4. Let f(z) = E;o a,z" be regular, univalent, and close-to-convex in
E(z: |z| <1). Then

~(6-2)larl < lanl - lanzl < (4-2) Jaa]  @=3,4, ).
Proof. Taking m =n - 2 in Theorem 3, we obtain the inequalities
~(n -9 ay| <nlay] - - 2]a, ] < @n-9]ayl,
~(n-9)ay| - 2]a, o] <nllay| - [a,_)) < n-9)[a] - 2]a,,|.

Since |a, ,| < (n - 2)|a;| (see [8]), Theorem 4 follows.

For close-to-convex functions f(z) in E we have been able to prove the inequal-
ity (1.7) only with the assumption that n - m is even. The possibility remains that
the inequality (1.7) holds for arbitrary nonnegative integers m and n. In support of
this proposition we prove (1.7) for close-to-convex functions in the special case
n=3, m=2. (Since [a,| <2, (1.7) is trivially true for the class S, for the case
n=2m-=1.)

THEOREM 5. Let f(z) =2z + 220 a, z" be regular, univalent, and close-to-con-
vex in E(z: |z| < 1), velative to the starlike function g(z) =z + E;‘o b,z". Then the
sharp inequalities

|32; -b,a,| <5 and \3 lag| - 2|az|l <3 -2 =5

hold,.
Proof. By hypothesis, there exists a real number « such that

n{el® z£'(z)/g(z)} >0 (z € E).

Since g(z) is starlike in E,
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[Se)

1+2p 2°

1 on

zg'(z)/g(z) = P(z)

where 9P(z) >0 in E and P(0) = 1. It follows that
(n-1)b, = by_1p; +by_ 2P+ - +b;p,_3 (b; =1).

In particular, b, = p; and 2b; = b, p; +p,, so that lb2| < 2 and

2
o by %

2
S| < 1.
We may also write
[+ 0]
el® z1'(z)/g(z) = Pl(z) cosa+isina = &%+ 27 2"
1

where ERPI(Z) >0 in E and Pl(O) = 1. Thus

3az = bg+cos «a e i (5]_ b, +52),

~

— -ic
2a, = b, +cosae P;

2
'_( bz) 0[5 (b, -2) +5
3a; - b,a, = b3——2— +cos e Py ’2——2— +p, |,
b
(3.8) |8a3 - byaz| < b3 -5 | +cos @ [21)+2] < 1+4cosa < 5.

Since |b,/2| < 1, it follows that

3a, - (Pzé) (ZaZ)‘ < 5.

Equality holds for the functions z(1 - £z)~2 (I 8| = 1). This completes the proof of
Theorem 5.

3 |a3| -2 |az| <

In the special case of Theorem 5 where f(z) is univalent and starlike with re-
spect to the origin in E, we can take g(z) = f(z), ¢ =0, and b, = a,, so that

(3.9) |3, - 93] <5, [3]ag] - 2[a,l| <5

However, the inequalities (3.9) follow more easily from (3.7). For if f(z) is starlike,
we can take b; = a3 and b, = a, in (3.7), and we obtain the inequalities

|3a3—a%| < |a3|+ |2a3 —a%l <3+2 =5,
-4 < 3|a,| -2]a,] < [3a;-a% <5.

It also follows, for starlike functions, that

(5.10) lay| - la) <

az)
as - (—2— a,
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We omit the proof of the following theorem, since the method is quite similar to
the one used in the proof of Theorem 1.

THEOREM 6. For some veal number a (|a| < u/2), let the function
f(z)=z+ E;o anZ®, vegular in E(z: |z| < 1), satisfy the inequality

ﬂl{eia%%} >0 (z¢E),

wheve g(z) =z + Z\/; c,z" is vegular and convex in one divection in E. Then, for all
n and m, the Taylor coefficients salisfy the sharp inequality

Inlan[ —m|am|| S%In(2n2+1) - m(2m? + 1)] .

In pavticular, |ay| < % (2n2+1) n=2,3, ).

REFERENCES
1. N. G. de Bruijn, Ein Satz itber schlichte Funktionen, Nederl. Akad. Wetensch.,
Proc. 44 (1941), 47-49.

2. W. K. Hayman, On successive coefficients of univalent functions, J. London
Math. Soc. 38 (1963), 228-243.

3. W. Kaplan, Close-to-convex schlicht functions, Michigan Math. J. 1 (1952), 169-
185.

4. J. E. Littlewood, On inequalities in the theory of functions, Proc. London Math.
Soc. (2) 23 (1925), 481-519.

5. S. Ozaki, On the theory of multivalent functions. II, Sci. Rep. Tokyo Bunrika
Daigaku, Sect. A 4 (1941), 48-87.

6. G. P6lya and L. J. Schoenberg, Remavrks on de la Vallée Poussin means and
convex conformal maps of the civcle, Pacific J. Math. 8 (1958), 295-334.

7. C. Pommerenke, On starlike and close-to-convex functions, Proc. London Math.
Soc. (3) 13 (1963), 290-304.

8. M. O. Reade, Sur une classe de fonctions univalentes, C. R. Acad. Sci. Paris
239 (1954), 1758-1759.

9. M. S. Robertson, Analytic functions stavlike in one divection, Amer. J. Math. 58
(1936), 465-472.

10. T. Umezawa, Analytic functions stav-like of ovder p in one divection, TShoku
Math. J. (2) 4 (1952), 264-271.

Rutgers — The State University



