GENERALIZED GREEN’S MATRICES
FOR COMPATIBLE DIFFERENTIAL SYSTEMS

John S. Bradley

1. INTRODUCTION

The existence and properties of a Green’s matrix for an incompatible differential
system with complex-valued coefficients are well known. Generalized Green’s func-
tions for compatible differential systems consisting of a single nth-order linear dif-
ferential equation with continuous coefficients together with boundary conditions in-
volving the values of the solution and its first n - 1 derivatives at two points may be
traced back to Hilbert [7]. Elliot [5] made a systematic study of such systems, and
Reid [8] extended Elliot’s results to compatible first-order systems involving n dif-
ferential equations and the same number of boundary conditions. Recently, the gen-
eralized Green’s function for the case involving the single nth-order linear differ-
ential equation and boundary conditions has been treated by Greub and Rheinboldt [6]
and by Wyler [11]; a more comprehensive treatment of an algebraic theory of opera-
tor solutions of boundary problems, which includes this case as a special instance,
is given by Wyler [12]. More recently, Bradley [3] has extended the results of Elliot
to quasi-differential operators of Euler type where the number of boundary condi-
tions is not necessarily the same as the order of the operator. The purpose of this
paper is to extend these latter results to vector-matrix systems, and thus to gener-
alize the theorems of Reid [8].

The specific form of the operator and some basic relationships that exist between
an operator and its adjoint are given in Section 2. Existence of a generalized Green’s
matrix is established in Section 3, and Section 4 is concerned with the existence and
properties of a “principal” generalized Green’s matrix. In particular, it is shown
that with respect to certain orthogonality conditions there exists a unique generalized
Green’s matrix that is characterized by conditions similar to those characterizing
the unique Green’s matrix for an incompatible system. Finally, Section 5 is devoted
to a brief discussion of boundary-value problems equivalent under a nonsingular
transformation, and to an extension of a result of Reid [9] which for incompatible
systems relates the Green’s matrix for one system to the Green’s matrix of an
equivalent system by a functional equation involving the respective leading coeffi-
cients and the nonsingular transformation matrix.

Matrix notation is used throughout; in particular, matrices with one column are
called vectors. The p X p identity matrix is denoted by Ep, and 0 is used indis-
criminately for the zero matrix of any dimension; the conjugate transpose of a ma-
trix M is denoted by M*. If the elements of a matrix function M are absolutely
continuous on an interval [a, b], then M'(x) denotes the matrix of derivatives at
those values of x for which the derivatives exist, and zero elsewhere; similarly, if

b
M is integrable (Lebesgue), then S M denotes the matrix of integrals. A matrix
a

function is called continuous, differentiable, and so forth, whenever each element has
that property. Finally, if u and v are vector functions with the property that v*u

- b
is integrable, then the integral inner product 5 v*u is denoted by (u, v).
a
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2. ADJOINT OPERATORS

Let A; and Ay denote n X n matrix functions, A, being absolutely continuous
and nonsingular, and A being integrable on an 1nterva1 [a, b]. Then L. will denote
the linear differential operator whose domain is the collection # of all absolutely
continuous n-dimensional vector functions y and which is defined by the formula

(2.1) Liyl = A;y'+Ayy.
For the operator L1 that is defined by
(2.2) Lt[z] = (-A%z)'+ A}z

we obtain immediately the Lagrange identity:
LEMMA 2.1. If y, z € A, then z*Lly] - (L*[z] ¥y = (zxA;y)".

Define 9, to be the collection of vector functions y in  for which
y(a) = 0 =y(b), and denote by QDE the collection of n-dimensional vector functions z
that are essentially bounded and measurable and for which there exists an integrable
n-dimensional vector function f, such that (L{y], z) - (y, f,) =0 for all y € 9.
The following theorem then is a consequence of Lemma 2.1 and the fundamental
lemma of the calculus of variations.

THEOREM 2.1. @} = o and z € D§ implies that £, = Lt[z].

If Ty is the restriction of L to 9,, then the ad]omt operator for T, is the
Operator T§ with domain QZO that is defmed by Tzl =£,. It follows from Theo-
rem 2.1 that TS = L.

Let 2 be a linear subspace of « that contains %, and let T be the restriction
of L to @. Denote by @* the collection of essentially bounded and measurable n-
dimensional vector functions z for which there is an integrable n-dimensional vec-
tor function f,, such that (Tlyl, z) - (v, £,) =0 for all y € @. It follows that
@* ¢ «, and for each z in @* there is at most one f,, namely LT[z], such that
(T[yl], z) (v, £,) = 0 for all y in @. The adjoint T* f T is the operator on @
defined by the formula T* [z] = £,; that is, T* is the restriction of Lt to @*. The
operator T is said to be self—ad]omt if and only if @ = @* and T = T*.

Let # and #* represent the respective subspaces of 2n-dimensional complex
space of end values (y(a); y(b)) for vector functions y in @ and @¥*, respectively.
If k < 2n. and the dimension of & is 2n - k, then P and Q will denote n X (2n - k)
matrices with the property that the columns of [- P*Q*]* form a basis for #. If, in
addition, k > 0, let M and N be k X n matrices such that the k X 2n matrix [MN]
has rank k and MP - NQ = 0. Then & is characterized as the collection of vector
functions y in « with the property that My(a) + Ny(b) = 0. If k = 0, then @ = .
Moreover, dim & + dim #* = 2n, and if dim & = m > 0, then @* is the collection
of vector funct1ons z in £ for which

P*A¥(a)z(a) + Q* At(b)z(b) = 0.
More generally, if dim % =m > 0 and R and S are (2n - m) X n matrices, then @*
is the collection of vector functions z in .« for which Rz(a) + Sz(b) = 0 if and only

if the (2n - m) X 2n matrix [R S] has rank 2n - m and

MAY H(a)R* - NAY"1(b)s* = 0.
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It follows from the foregoing remarks that the adjoint of T* is T.

The nullity of the operator T is the dimension of the null space of T, that is, the
dimension of {y:y € @, Lly] = O}. The next two theorems follow from classical
results [4, Chapter 11].

THEOREM 2.2. If dim #B* =k and the nullity of T is r, then K+ - n is the
nullity of T.

THEOREM 2.3. An integrable n-dimensional vector function 1 is in the range
of T if and only if (f, z) = 0 for all z in the null space of T*.

It should be noted that if A,(x) = # for all x € [a, b], where

0 -E
L
E, O
then the operators (2.1) and (2.2) have precisely the form (2.8) and (2.9), respective-
ly, of [3]; these in turn are equivalent to a quasi-differential operator and its adjoint.

Thus the theorems in Sections 3 and 4 of this paper extend the results of Section 5 of
[3]. If, moreover, p = v, then (2.1) and (2.2) are of the form studied by Reid in [10].

3. EXISTENCE OF A GENERALIZED GREEN’S MATRIX

By definition, a generalized Green’s matrix for the operator T is an essentially
bounded and measurable n X n matrix function G on

O={(xtha<x<b a<t<b}

with the property that if f is in the range of T, then the function y defined by
b
vy = | Glx, 01 at
o

is in @ and T[y] = f. We shall now construct a matrix function by following the
classical method for constructing a Green’s matrix for the case where T and T*
have nullity zero, but using E. H. Moore’s generalized inverse of a matrix.

LEMMA 3.1. If Y is a fundamental matvix for the equation L[y] = 0, then there
exz'szfs a {undamental matvix Z for Lt[z] =0 such that Z*(x)A;(x)Y(x) = E for all
X € |a, bl.

This result follows from Lemma 2.1 and the existence and uniqueness theorems
for first-order vector-matrix differential equations.

THEOREM 3.1. If f is an integrable n- dimensional vector function, s € [a, b],
c is a constant n-vector, and Y and Z ave as in Lemma 3.1, then the solution y of
Lly] = f satisfying y(s) = Y(s)c is given by

v(x) = Y(x)e + S Y(x) Z*(t) £(t) dt .
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Indeed, if we set y(x) = Y(x)u(x), then y is a solution of the system L[y]=f,
y(s) = ¥(s)c if and only if A; Yu'=1, u(s) = c. Hence u'= Z*f and

ulx) = ¢+ Sx Z*(t) £(t) at ,

from which the theorem follows.

Now suppose that Y is a fundamental matrix for L[y]| = 0 and that Z is chosen
as in Lemma 3.1. For k > 0 and dim % = 2n - k, let s(Y) and s~(Y) be k X n ma-
trices defined as s(Y) = MY(a) + NY(b) and s~ (Y) = MY(a) - NY(b). If r is the nul-
lity of T, then s(Y) has rank n-r. If r > 0, let B be an n X r matrix with the
property that B*B = E, and s(Y)B=0. If r > n - k, then C will represent a
k X (k - n + r) matrix such that C*C = Er_,4+, and C*s(Y) = 0. It follows that the
(k + r) X (k + r) matrix

(3.1) [ séz) g ]

is nonsingular and its inverse is of the form

(3.2) [ i lg‘] .

The n X k matrix R is the generalized inverse of s(Y) in the sense of E. H. Moore
(for a more complete discussion, see [10, Section 6]). ¥ r = 0, then the matrix B -
does not appear; if r = n - k, then C does not appear.

Now if dim @ < 2n, let Gg(x, t) be the n X n matrix defined by

Go(x, t) = %Y(x) [l);—:—%l— En+Rs_(Y)] 7*(t) when x#t and x,t € [a, b],
Go(x, x) = % Y(x)Rs (Y)Z*(x) when x € [a, b].

If dim & = 2n, let Gg(x, t) be defined by

-t
lf{—_t—l Y(x)Z*(t) when x #t and x, t € [a, b],

D] =

Go(x, t) =

Go(x, x) = 0 when x € [a, b].

If r is the nullity of T and r = n - k, then it follows from Theorem 2.2 that the
nullity of T* is 0. Hence, by virtue of Theorem 2.3, the range of T is precisely the
collection of all integrable n-dimensional vector functions. For r > n - k, we have
the following theorem.

THEOREM 3.2. Let Y and Z be as in Lemma 3.1, let the nullity r of T sat-
isfy r > n - k, and suppose that C is a k X (k - n + r) matvix satisfying
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Then an integrable n-dimensional vector function t is in the vange of the operator T
if and only if

b
(3.3) C*s™(Y) S Z*@) £(t)dt = 0.

Now it follows from Theorem 3.1 that if y is a solution of L [y] = f, then for a
suitable vector £ we have the relation

x b
(3.4) y(x) = % [Y(x)& + S Y(x) Z*(t)£(t) dt - S Y(x) Z*(t)£(t) dt ] .
a X
If, moreover, y € &, then My(a)+ Ny(b) = 0,
b
(3.5) s(Y)¢ = s~(Y) S Z*(t) £(t) dt,
and therefore (3.3) follows. On the other hand, if (3.3) holds, define £ as
b
£ = Rs-(Y)S Z*(t) f(t)dt,
a

and it is evident that S*£ = 0 and (3.5) holds. Now, if y is defined by the formula
(3.4), then L[y]=f and y € @, since My(a) + Ny(b) = 0.

THEOREM 3.3. The matrix function G defined above is a genevalized Green's
Junction for T.

If dim & = 2n, then this result follows directly from Theorem 3.1.

If dim # < 2n, then Theorem 3.3 follows from Theorem 3.2; in particular, set
b
£ = Rs~(Y) S ZX(t)£(t) dat
a

in (3.4), where R is the generalized inverse of S(Y).
In the sequel, the number p will be defined by the equation p=k +r - n.

THEOREM 3.4. The genevalized Green's matrvix for T is not unique. If the
columns of the n X r wmatrix function U form a basis for the null space of T and the
columns of the n X p matrix function V form a basis for the null space of T*, and
G, is one genevalized Green's matvix for T, then a matvix function G on O is also
a genevalized Green's matvix for T if and only if therve exist essentially bounded and
measurvable r X n and n X p matvix functions I and A, respectively, such that

(3.6) G(x, t) = G;(x, t) + U(x) I(t) + A(x) V¥(L).

If T" and A are essentially bounded and measurable r X n and n X p matrix
functions, respectively, and G is defined by (3.6), then it is clear from Theorem 2.3
that G is a generalized Green’s matrix for T.
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To establish the converse, we may assume without loss of generality that

bk L
SUU=E1. and SVV=Ep.

a a

If w is an integrable n-dimensional vector function and

b
£(x) = w(x) - V(X)S V() w(t) at,

b
then 5 V*(x)f(x)dx = 0. Thus it follows Theorem 2.3 that f is in the range of T.

a
Suppose that G is a second generalized Green’s matrix for T, and let

F(x, t) = G(x, t) - Gy(x, t).

Then there exists a constant r-vector & such that

Sb F(x, )f(t)dt = U(x)£,
and if

K(x, t) = F(x, t) - S ® Px, 8)V(s) V(D) ds,

b b
then S S U*(x)K(x, t)f(t) dtdx = £, and consequently

a a

b b
S ,[K(x, £) - Ux) S U*(s)K(s, t) ds] w(t)at = 0.
a a
But w is an arbitrary integrable vector function; therefore

K(x, t) - U(x) Sb U*(s)K(s, t)ds = 0 on O
and

b b
F(x, t) = U(x) S U*(s)K(s, t)ds + 5 F(x, 8)V(s) V*(t)ds.
a a
Hence, (3.6) holds, with T" and A defined by the equations

b b
I'(t) = S U*(s)K(s, t)ds and A(x) = S F(x, s)V(s)ds.
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It is clear that I" and A are essentially bounded and measurable.

COROLLARY 1. If f is in the vange of T and y is a function in 9 such that
T [yl = £, then there exists a generalized Green's matvix G for T such that

b
y(x) = S G(x, t)f(t)dt  on [a, b].

The function y does not, however, determine G uniquely, since
Gl(x, t) = G(x, t) + AX) V¥(t)

may be different from G(x, t); but
b b
y(x) = S G (x, DEE)dt = S G(x, t)i(t) dt .
a a

In fact, we have the following result, modulo the definition of a generalized Green’s
function along the diagonal.

COROLLARY 1II. If f is an integrable vector function, then there exists a one-
to-one correspondence between the functions y in @ for which Tly]={ and the
genervalized Green's functions for T if and only if the nullity of T* is zevo.

4. PRINCIPAL GENERALIZED GREEN’S MATRICES

We shall now give conditions that determine a unique generalized Green’s matrix.

THEOREM 4.1, Let U and V satisfy the hypothesis in Theorem 3.4, and sup-
pose that ® and Q ave integrable n X r and n X p matvix functions, vespectively,
with the property that the matvrices

b b
‘S e*u and S vV¥Q
a a

arve nonsingulay. Then there exists a unique genevalized Green's matrix Gegg for
T satisfying the conditions

gb Geqls Ha)dt = 0 (x < [a, b]),

(4.1)

Sb 0% (x)Ggq(x, thdx = 0 (t € [c, b]).

b b
We may assume that S ®*U =E, and S vV¥Q = E,. Suppose G is the gen-
a a

eralized Green’s matrix described in Theorem 3.3 and determines matrix functions
T and A such that the generalized Green’s matrix given by (3.6) satisfies conditions
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(4.1). Such a generalized Green’s matrix G satisfies the conditions (4.1) if and only
if T and A satisfy the equations

b b
I‘(x)+5 @*(s) Gy (s, x)ds+5 @(s)A(s) V¥(x)ds = 0,
(4.2) : :

b b
A+ §7 Golx, s)a(s)as + |7 U T(e)2(s)ds = 0.
a a
A particular pair of solutions for equations (4.2) is

b
Ax) = S Golx, 8)9(s)ds,

a

b b b
I(x) = S S A (s)Gols, t)Q(t) V¥ (x)ds dt - S ®*(s)Go(s, x)ds.

a

Hence, the existence of Ggg follows. Moreover, if I' and A constitute a solu-
tion of (4.2), then after substituting the value of I'(x) given by the first equation into
the second equation of (4.2), we can show by straightforward computation that the
value of

U(x) T'(t) + A(x) V¥(t)

is independent of the particular choice of I" and A. Hence Ggg is unique.

Following the terminology of Reid (8], we call a generalized Green’s matrix sat-
isfying (4.1) a principal genevralized Green's matvix for T.

The following is a dual of Theorem 4.1.

THEOREM 4.2. If U, V, @, and Q satisfy the hypotheses in Theovem 4.1, then
theve exists a unique genevalized Green's matvix Hog for T* satisfying the condi-
tions

‘gb Q*(x)Hoe(x, t)dx = 0 (t € [a, b]),
(4.3) |

Sb Hoe(x, t)@(t)dt = 0  (x € [a, b]).

a
For brevity, denote by B and Bg the n X n matrix functions defined on OO by
Bo(x, t) = Qx)V*t), Bglx,t) = 0(x)U*{t),

and if t € [a, b], let G¢(x) = Gggq(x, t).

THEOREM 4.3. If G@q is the unique genevalized Green's malvix satisfying
(4.1), then the following five conditions are satisfied:
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(4.4) G@gq is continuous on O, except along the line x =1t; if t € (a, b), then Gy is
differentiable on la, t) U (t, bl;

(4.5) if t € (a, b), then G, has vight and left limits G(t") and G(t”), vespectively,
at t, and

G(th) - G (t7) = AT (D);
(4.6) if t € [a, bl, then L[G,](x) = -Bq(x, t) on [a, t) U (t, bl;

(4.7) if t € (a, b), then G satisfies the boundary conditions that chavacterize the
sel 9;

b
(4.8) 5 0*(x)Ggqx, t)dx = 0.

Conditions (4.4) to (4.6) may be verified directly, by means of the properties of
Go. Condition (4.8) is one of the conditions in (4.1). If @ = o, then (4.7) is trivially
satisfied. Otherwise, let w be an integrable vector function, and define f by

b
£(x) = w(x) - Q%) 5 VFE) wt)dt .

b
It follows that S V*f =0 and hence f is in the range of T. Let u be defined by
a

b
ux) = {7 Gealx, it)at.
a
It follows from (4.1) that

b b
5 Geg (X, b dt =S Ggo (s Hwb)dt,

and therefore

b
0 = Mu(a) + Nu(b) = S [MGggq(a, t) + NGggq(b, t)w(t)dt,

from which (4.7) follows since w is an arbitrary integrable n-dimensional vector
function.

COROLLARY. If w is an inlegrable n-dimensional vector funclion and y is de-

b
fined by y(x) = S Ggqlx, thw(t)dt, then
a

(4.9) Ly](x) = w(x) - Sb BQ(X, t)w(t)dt, y € D, Sb ®*y = 0.
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It is clear that the function Ggg, satisfies (4.9). To see that these conditions
follow from (4.4) to (4.8), let G be a function defined on (O satisfying these latter
conditions. The last two assertions of (4.9) follow from (4.7) and (4.8), respectively.
The equation in (4.9) is equivalent to the assertion that G is a generalized Green’s
matrix for T. To show that this is the case, let

F(x, t) = G(x, t) - Gggq(x, t) for x #t,
Ft, t) = G(tT, t) - Gggoth, t),

and then let F (x) = F(x, t). Condition (4.5) implies that F, is continuous for each
t € (a, b), and (4.6) implies that

AL F() = 4@ Fy(a) - (7 Ay Fx)as,

from which it follows that there exists a continuous r X n matrix function I"' such
that F(x, t) = U(x) I'(t). Thus it follows from Theorem 3.4 that G is a generalized
Green’s matrix for T.

Similarly, the unique generalized Green’s matrix Hp g for T* that satisfies
(4.3) also satisfies conditions analogous to (4.4) to (4.8).

THEOREM 4.4. If x, t € [a, b] and x #t, then Hgg(x, t) = Gy ot, x).

Let u and w be integrable n-dimensional vector functions, and define y and z
by

b b
y(x) = S Gggq(x, t)u(t)dt, z(x) = S Ho @ (x, t)w(t)dt,

respectively. Then use the corollary to Theorem 4.3 and the definition of D* to
conclude that

b rb
{7 v mge v - Gealt, Mutdaxdt = o.

The theorem follows, since u and w are arbitrary integrable vector functions.

COROLLARY 1. The matrix function Ggqo is characterized by the conditions
(4.4) to (4.8), and Hq g is charvacterized by analogous conditions.

As a consequence of Theorems 3.4 and 4.4, we have the following result:

COROLLARY 1II. If G is a genevalized Green's matvix for T, then the function
H defined by H(x, t) = G*(t, x) is a generalized Green's matrix for T*.

5. EQUIVALENT BOUNDARY PROBLEMS
Consider a second boundary problem

L°[u]EA‘1’u'+Agu=o and ueP°,
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where A7 and A% satisfy the conditions specified for Ay, Ay, and @° is either all
of « or is characterized by the boundary conditions M°u(a) + N°ou(b) = 0, where
M° and N© are matrices of order k X n such that [M® N°] has rank k. Let T° be
the restriction of L° to 2°. Following the terminology of Reid [9] and Bliss [1],
[2], we say that the operator T is equivalent to the operator T° under the trans-
formation

(5.1) u = Hy

provided H is a nonsingular, absolutely continuous matrix function on [a, b] such
that a vector function y satisfies L[y] = O or belongs to @ if and only if the corre-
sponding u given by (5.1) satisfies L°[u] = 0 or belongs to @°. It is clear that if
T is equivalent to T° under the transformation (5.1), then the nullity of T is the
same as the nullity of T°.

A classical result in the theory of equivalent boundary problems is that if
A (x) = A(x) = E for all x € [a, b], T is equivalent to T under (5.1), the number k
of boundary conditions characterizing @ and 2° is n, and the nullity of T (and
therefore of T°) is zero, then the unique Green’s matrices G and G° for T and
T°, respectively, satisfy the relation

H(x)G(x, t) = G°(x, t)H({t) if x,te [a,b] and x#1t.

Reid [9] has extended this to the following theorem.

THEOREM 5.1. If T is equivalent to T° under the transformation (5.1), k = n,
G and G° ave the Green's matrices for T and T°, respectively, x, t € [a, b), ard
X #t, then

H(x) G(x, t)A,(t) = G°(x, t) AT(t)H(t).

If the condition that k = n is removed, then the generalized Green’s matrix is
not unique; however, we have the following proposition.

THEOREM 5.2. If T is equivalent to T° undev the transformation (5.1) and G
is a genevalized Green's matlvix for T, then theve exists a generalized Green's ma-
trix G° for T° satisfying

H(x)G(x, t)A, (t) = G°(x, ) AQ()H({t) if x, t € [a, b] and x #t.

It is sufficient to show that if

G°(x, t) = H®)G(x, t) A (DH 1) A" I(t)  for x #t,

then G° is a generalized Green’s matrix for T°. But this follows immediately from
the fact that the identity

L°[Hy] = ASHA;! L{y]

is equivalent to the condition that L[y] = 0 if and only if L°[Hy] = 0. (See Reid [9].)
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