GALOIS GROUPS OF EXTENSIONS OF ALGEBRAIC
NUMBER FIELDS WITH GIVEN RAMIFICATION
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Let k be an algebraic number field, and let S be a set of valuations on k. Let
G be the Galois group of the maximal extensmn of k unramified outside of S.
Safarevié [10] has pointed out the interest and importance of this group. It will be
shown here that the cohomological p-dimension of G is at most 2 if S contains all
primes above p and if, in addition, k is totally imaginary in case p = 2; this gen-
eralizes a result of Tate in case S consists of all primes of k [11, Chapter II|. As
a consequence, the Galois group P of the maximal p-extension of k unramified
outside S is a pro-p-group of cohomological dimension at most two. (In a paper to
appear in the Journal of Algebra, the author studies profinite groups of finite co-
homological dimension. A single group-theoretic criterion shows that the groups
we consider here have strict cohomological dimension 2.) In the final section, we
compute the number of generators and relations for the group P in case k contains
the pth roots of unity; this completes, in the situation we consider, a result of
Safarevic [10]. In particular, we find necessary and sufficient cond1t10ns for P to
be free, and thereby we prove anew a result of Iwasawa [6] on regular cyclotomic
extensions.

The author wishes to express his gratitude to Jean-Pierre Serre for having
taught him this subject in absentia through his lecture notes, and to John Smith for
many stimulating discussions. The author also thanks the referee for pointing out
that Tate [12] has announced deep results (whose proofs still remain unpublished)
that include many of those obtained here by more elementary means.

1. NOTATION AND A TRANSITIONAL LEMMA

We use freely the language of profinite groups, that is, compact, totally discon-
nected topological groups (for a convenient source, see [5]; a more complete treat-
ment is given in [11]). The class field theoretic results we need can all be found in

[1].

We consider an algebraic number field M (not necessarily finite) and a set S of
valuations on M. We shall also use the letter S to denote, by abus de langage, the
set of valuations on a Galois extension 2 of M whose restrictions to M fall into S.
We say that Q/M is unramified outside of S if every valuation of € not in S is un-
ramified over M. We say that Q/M is (S, p)-closed if in addition every proper p-
extension of © ramifies outside of S. This is most conveniently expressed as fol-
lows. Let Kg be the subring of K consisting of fractions a/b, where a and b are
integers in K and b is a unit outside S; in other words, let Kg be the intersection
of all valuation rings of K whose primes do not fall into S. Then /M is unramified
outside S if and only if Qg/Mg is a Galois extension of commutative rings in the
sense of Auslander and Goldman [3]. In [2] only the case in which the Galois group
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is finite was considered, but the passage to the limit causes no problem. The group
of units U(Kg) of Kg is simply the so-called group of S-units of K. The reader
should note that there may be ramification on the set S,, of infinite primes.

LEMMA 1.1. Let M be a numbeyr field, and let S be any set of valuations of M
containing all valuations above p. Let L be an (S, p)-closed extension of M contain-
ing the group Bp of pth roots of unity. Then we have an exact sequence

15 g, - U(Lg) - U(Lg) — 1,

where p denoles the pth power map.

Proof. It is well known [1, Chapter 6, Theorem 4 ] that the adjunction of the pth
root of an S-unit introduces no ramification outside S.

LEMMA 1.2. With the same notation as above, let G be the Galois group of
L/M. Then the following are equivalent.

i) ed, G < n.
ii) For every extension K of M unvamified outside S, H*(H, U(Lg)) is divisible

by p and H*1(H, U(Lg))p) = 0, wheve H is the Galois group of L over K. (For any
abelian group A, we write A(p) for the p-primary component of A.)

iii) The same as ii), except that we consider only extensions K/M that are finite
extensions of degree relatively prime to p.

Proof. From Lemma 1.1, we see that condition ii) is equivalent to
Hn+1(H, up) = 0. We complete the proof by copying that of Proposition 4 in Chapter
II of [11], which it generalizes.

We must thus interpret the cohomology of the group of S-units: this is the con-
tent of the next section.

2. COHOMOLOGY OF THE GROUP OF S-UNITS

Auslander and the author {2], and independently Chase, Harrison, and Rosenberg
[4], have found a seven-term exact sequence that holds for Galois extensions of
commutative rings. We apply this result to obtain the following.

PROPOSITION 2.1. Let L. be a Galois extension of K, unramified outside S,
with group G. Then we have an exact sequence
0 — HYG, U(Lg) — P(Kg) — HYG, IP(Lg)) — H2(G, U(Lg))
— B(Lg/Kg) — HNG, IP(Lg)) — H3G, U(Lg)),
where TP(Lg) denotes the projective class grvoup of Lg and B(Ls/Kg) is the sub-
group of the Brauer group of Kg split by Lg.

Proof. We have already observed that Lg is a Galois extension of Kg, hence
the results mentioned above are directly applicable.

Remark 2.2. If K is a finite number field, IP(Kg) may be identified with the
quotient of the ideal class group Clk of K by the subgroup generated by the classes
of all primes in S. If K is an infinite extension, then IP(Kg) = lim IP((K;)g), where

the K; are finite extensions with K = lim K.
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PROPOSITION 2.3. Let L be an (S, p)-closed extension of K, and let G be the
Galois group of L over K. Then

i) HY(G, U(Lg))(p) = P(Ks)(p),

ii) H3(G, U(Lg))(p) = B(Lg/Ks)(p).

Proof. 1t is readily verified (see Section 6 of [8]) that we may write L = 11_131 L;
and K = lgn K;, where L; is a Galois extension of K; unramified outside S and Lj

is a finite number field. Since L is an (S, p)-closed extension of K, we conclude
that L contains the maximal abelian unramified p-extension of L;, for each i. The
principal ideal theorem shows that lim CILi(P) = 0; hence it follows that

IP(Lg)(p) = 0, by Remark 2.2. An alternative proof of this result, under the hypoth-
esis that S contains all primes above p, is given in the Appendix. The result fol-
lows from Proposition 2.1, if we take p-primary components.

Let K be the union of finite number fields K;. For any valuation v of K, denote
by K, the direct limit of the finite completions (K;),; that is, let K, = lim (K;),,.

We define the local degree at v to be the least common multiple of [(K;),: @] in
the sense of supernatural numbers. At this point it is convenient to recall a result
contained in the proof of Proposition 9, Chapter II of [11].

LEMMA 2.4. Let K be a numbey field. Suppose that the local degree of every
valuation is divisible by p™ and that K is totally imaginary in case p = 2. Then
B(K)(p) = 0, where B(K) is the Brauev group of K. In particular, B(Kg)(p) = O.

Proof. Since Kg is the direct limit of Dedekind domains, the natural map
B(Kg) — B(K) is a monomorphism by Theorem 7.2 of [3]. This proves the second
assertion.

COROLLARY 2.5. Let K have the propevties in Lemma 2.4, and let S be a set
of valuations including all those extending p. Let L be an (S, p)-closed extension of
K containing the pth voots of unity, and let G be the Galois group of L over K.
Ther the following are equivalent:

i) ed; G <1,

ii) IP(Kg) is p-divisible.

Proof. The p-primary component of the Brauer group of Kg is trivial, by
Lemma 2.4. The result follows from Proposition 2.3 and Lemma 1.2,

Remark 2.6. The verification of ii) seems to be very difficult, and we shall use
the corollary only in case IP(Kg) is trivial. An interpretation of IP(Kg) is given in
[7].

Remark 2.7. When S contains all primes above p, Proposition 2.3 shows that
H2(G, U(Lg))(p) = B(Kg)(p)

for any number field K.

In fact, adjoining the p™th roots of unity introduces no ramification outside S.
Since L is (S, p)-closed, it contains the subfield of order p™-! of the cyclotomic
field of p™th roots of unity. Hence L satisfies the hypotheses of Lemma 2.4, and
thus B(Lg)(p) = 0, which implies that B(Lg/Kg)(p) = B(Kg)(p).

LEMMA 2.8. Let K be a finite number field, and let S be a nonempty set of
finite primes; then we have an exact sequence
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0 - BKg) > @ BK,)—«2z-0,
q€ESUS

where K denotes the completion of K at the finite or infinite prime q, and S,, de-
notes the set of infinite primes of K.

Proof. Let A be a central separable algebra over Kg; then A may be consid-
ered as a maximal order in the central simple algebra A & i s K over K [3]. The

assumption about A asserts that A ®KS K is unramified outside S. The result fol-

lows from the definition of the Hasse invariant for the Brauer group of number fields
together with the observation that the map A — A ®Ks K induces a monomorphism

From Remark 2.7 and Lemma 2.8 we obtain the following.

COROLLARY 2.9. Let K be a finite number field, and let S be a set of primes
including all primes above p. Let L be an (S, p)-closed extension of K with group
G. Then we have an exact sequence

0 — H%G, U(Lg))p) = @ BK)p) ~ @,/Z, — 0.
q € SUS,,

In particular, HZ(G, U(Lg)) is divisible by p, if in addition K is totally imaginary in
case p = 2.

PROPOSITION 2.10. Under the hypotheses of Corollary 2.9,
H3(G, U(Lg))p) = 0.
Proof. Since the local degrees of L are divisible by p™, we conclude from
Theorem 14, p. 69 of [1] that H3(G, L*)(p) = 0, where L* denotes the multiplicative

group of L. Let I;, denote the group of invertible ideals of Lg, and let Hy, be the
subgroup of principal ideals. Then we have two exact sequences

0 - H; — I; — IP(Lg) — O,

0 — U(Lg) — L* — Hj, — 0.
Passing to cohomology, we obtain the sequences
(2.10.1) H(G, L*)(p) — HA(G, Hy )(p) — H>(G, U(Lg))(p) — H(G, L*)(p) = 0,
(2.10.2) 0 — H*(G, H.)(p) — HA(G, IL)(p) — O,

where the extreme terms in (2.10.2) are trivial, since IP(Lg)(p) = 0, as we saw in the
proof of Proposition 2.3.

Let M be a finite Galois extension of K, with group H, and contained in L. We
denote by Ji,[ the group of ideles of M whose components are 1 at all primes of S,

and by Vi/[ the subgroup of JISVI consisting of those ideles whose components are
units everywhere. We have an exact sequence

S S
1 - V3 — I3 5
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where q&((xq)) =11 qVq(Xq_) and vg is the exponential valuation at the prime q.

Since M is an unramified extension of K, the cohomology of VI\S/I is trivial, and in
particular,

H(H, 15) € @ HA(H,, M),
q¢s

where q ranges through the primes of K and 1\7[q is the completion of M at some
prime above q whose decomposition group is written Hq (for details see the pro-
logue to [1]). We may pass to the limit by choosing a valuation v of L above each
prime g of K not in S. Then we have an isomorphism

(2.10.3) HY(G, 1) £ @ HXGy, L,),
q¥¢s

which may be composed with (2.10.1) and (2.10.2) to give the exact sequence

H2(G, L*)(p) — © H2(G,, L,)(p) — H3(G, ULg)(p) — 0,
qQ¢S

where the map 7 is the natural map of the Brauer group of K into the direct sum of
the Brauer groups of the completions of K. Since S is nonempty, and elements of
H2(G, L*)(p) are determined by their local invariants and the sole condition that the
sum of these invariants be zero, we see that 7 must be onto and that

H3(G, U(Lg))(p) = 0.

We are now ready to state and prove the main result of this section.

THEOREM 2.11. Let K be a finite number field, and let S be a set of primes on
K containing all primes above. p. In case p = 2, suppose that K is totally imaginary.
Let L be an (S, p)-closed extension of K, and let G be its Galois group. Then
cdp G < 2.

Proof. Let M be the maximal extension of K unramified outside S. Then M
contains the pth roots of unity, and the hypotheses of Lemma 1.2 are satisfied be-
cause of Corollary 2.9 and Proposition 2.10. Hence cdp H < 2, where H is the
Galois group of M over K,

Denote by N the Galois group of M over L. Then cdp N < 1, by Corollary 2.5,
since IP(Lg)(p) = 0, as we have seen earlier. But G = H/N, and N has no proper
p-quotients; hence it follows from the Hochschild-Serre spectral sequence that
cdp G = cdp H/N < cdp H < 2, as in Proposition 2 of Chapter II of [11].

3. GENERATORS AND RELATIONS

In this section, we suppose K is a finite number field containing the pth roots of
unity. We denote by S a set of finite primes of K containing all primes above p.
Let L be the maximal p-extension of K unramified outside S, and let G be its
Galois group. We wish to compute the number of generators and relations of G, that
is, the dimension of ul (G, FP) and HZ(G, Fp) over the field F of p elements (see
[9], [10], or [11]).

Once more we exploit the cohomology of the exact sequence
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p
1— by U(Lg) — U(Lg) — 1,
where [ is the group of pth roots of unity, to obtain the exact sequences

) 0 — JU(Kg) — HY(G, py) — H'(G, U(Lg)), — 0,
3.1.1
0— le(G, U(LS)) - HZ(G) IJ'p) - HZ(Gs U(LS))p — 0 ’

where for any abelian group A, we write A, = {a ¢ A|pa=0} and ,A = A/pA.
Since G is a pro-p-group, it acts trivially on p,; that is, Lp = P We may re-
interpret (3.1.1), by means of Proposition 2.3 and Corollary 2.9, fo obtain the fol-
lowing.

THEOREM 3.1. Let K and S be as above, and let G be the Galois gvoup of the

maximal p-extension of K unramified outside S. Then we have the exact se-
quences

0 — LU(Kg) — HY(G, Fp) — P(Kg), — 0,

2 - o
0 — ,IP(Kg) = HG, F) = @ B(Kg)p > Fp — 0,
qeSUS

whevre B(kq) is the Brauey group of the completion of K at q, and 0O is the sum of
the local invariants.

Remark. The second sequence expresses roughly the fact that the relations on
G come from the local fields and the ideal class group. (In a recent conversation,
James Ax mentioned that Koch has made this statement precise, in a paper to appear
in J. Reine Angew. Math.) It is worthwhile to recall that IP(Kg) is the quotient of the
ideal class group of K by the subgroup generated by the classes of ideals in S; in
particular, IP(Kg) = {1} if S contains a prime in each ideal class of K.

We denote by 7(A) the minimal number of generators of the p-primary com-
ponent Aj; that is, 7(A) = dimp (AP) = dime (PA).
P

COROLLARY 3.2. With the notation above, G is a pro-p-group on
|S| +1ry + 1, +7(IP(Kg)) genevators with ISI + 7(IP(Kg)) + ry - 1 relations, where
r, is the numbey of real primes and r, the number of complex primes of K.

Proof. The result follows from Theorem 3.1 and the Dirichlet-Hasse-Chevalley
theorem on S-units, if we count dimensions over F,.

Remark. Corollary 3.2 shows that, under our hypotheses on K and S, the upper
bound obtained by Safarevic [9] is actually equal to the number of relations of G.

COROLLARY 3.3. Under the hypotheses of Corollary 3.2, the following are
equivalent:
i) G is a free pro-p-group.

ii) K is totally imaginary, theve is a unique prime p in K above p, S = {p },
and the subgroup genevated by the class of p contains the p-primary component of
the ideal class group of K.

Proof. G is free if and only if it has no relations. From Corollary 3.2 we con-
clude that |S| = 1 and IP(Kg)(p) = 0; hence our result follows.
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Remark. Since a closed subgroup of a free pro-p-group is also free, we con-
clude that property ii) is inherited by p-extensions L of K unramified outside p.
This applies, in particular, if p is a regular prime and K is the cyclotomic field of
pth roots of unity (respectively, ®(i)), in which case we conclude that G is a free
pro-p-group on (p + 1)/2 (respectively, 2) generators. We also recover the fact that
p does not divide the class number of the cyclotomic field of p"th roots of unity,
since the unique prime p above p is principal (see [6]).

4, APPENDIX

Let R be a Dedekind domain, containing the pth roots of unity, and in which p is
a unit; and let K be the quotient field of R. Let L be an extension of K, closed
under unramified p-extensions. Then IP(T)(p) = {1}, where T is the integral
closure of R in L. In fact, choose an invertible ideal % of order p in IP(T), so
that «P=(u) with pw € L. Then % and p come from a finite extension of K, and
we may suppose without loss of generality that they come from K. Since %P = (u),
p divides the exponential valuation of it at every prime q of R. Since p is a unit

P
in R, we verify easily that K(V ) is an unramified extension of K, for instance by

P, b
localization. Hence K(V) is contained in L, and « = (¥ ); that is, 9 is principal,
and our claim follows.

This result shows that we did not need the principal ideal theorem for our appli-
cations.
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