SEMIGROUPS OF NONLINEAR. TRANSFORMATIONS

J. R. Dorroh

Suppose X is a B-space, let B(X) denote the B-space of bounded linear trans-
formations from X into X, and let I denote the identity operator on X. A family
[T(), 0 <t < «] of operators in B(X) is said to be a uniformly continuous semi-
group if and only if

i) T(0) = I and T(t)T(s) = T(t +s) for s, t > 0, and
ii) {|T(s) - T(t)| - 0 as s = t, for t> 0.

A necessary and sufficient condition that a family [T(t), 0 <t < «] of operators in
B(X) be a uniformly continuous semigroup is that there exist an operator A in B(X)
such that T(t) = e*® for all t > 0, or equivalently, such that T(0) = I, and
(d/at)T(t)x = AT(t)x for x in X and t > O (see Hille and Phillips [3, Section 9.6,

p. 287] or Dunford and Schwartz [2, Chapter VI, p. 613]). Under the additional re-
quirement that X be a complex B-space, we extend this theorem to families of non-
linear transformations.

Suppose S is a connected open set in X. H M is a connected open set in
[0, ©) X S such that (0, x) is in M for each x in S, and f is a function from M into
S, then f is said to be a uniformly continuous semigroup if and only if it satisfies
the following three conditions.

a) f is locally uniformly continuous; that is, for each (t, x) in M, there exists a
neighborhood of (t, x) on which f is uniformly continuous.

b) The second-place partial derivative f,(t, x) exists (as a Fréchet derivative;
see Dieudonné [1, pp. 143, 167] or Hille [3, Chapter II, p. 110}) for all (t, x) in M,
and f, is a locally uniformly continuous function from M into B(X).

c) £(0, x) = x for all x in S, and
f(s, f(t, x)) = f(s +t, x) for (s, f(t, x)) and (s +t, x) in M.

The three conditions are satisfied, for a suitable set M, if f(t, x) = T(t)x for some
uniformly continuous semigroup [T(t), 0 <t < =] of operators in B(X), in which
case f,(t, x) = T(t). The main theorems to be proved are as follows.

THEOREM 1. If M is a connected open set in [0, ©) X S that contains (0, x) for
each x in S, and the function f from M into S is a uniformly continuous semigroup,
then there exists a continuously (Fréchet) diffeventiable function F from S into X
such that

f, ¢, x) = F({@t, x)) forall (t, x) in M,

wheve £, denotes the first-place partial devivative (in the ovdinary sense) of f.

THEOREM 2. If G is a continuously (Fréchet) diffeventiable function from S
into X, then theve exist an open set M in [0, ©) X S that contains (0, X) for each x
in S, and a function g from M into S such that
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g(0,x) = x for x in S and g, x) = G(g(t, x)) for (t, x) in M.

Movreover, this function g is a uniformly continuous semigyroup.

Proof of Theorem 1. First, we state a definition and establish two lemmas. For
each (v, x) in M with v > 0, let F,(x) = [f(v, x) - x]/v.

LEMMA. For (s, x) in M and sufficiently small v,
| F (s, %)) - £,(s, O F (x)|| < | F,®)| sup ||£,(s, %) - £,(s, )| (v in [x, £(v, ®)]),

wheve [x, f(v, x)] denotes the closed line interval from x to f(v, x).

Proof.
v F,(i(s, x)) = f(v, (s, x)) - £(s, x) = £(s + v, x) - (s, x) = (s, £(v, x)) - £(s, %),
and
[ £(s, £(v, %)) - £(s, %) - £,(s, %) [£(v, x) - x] ||
< (v, ) - x| sup [[£(s, %) - £,(5, ¥)|| (v in [x, £(v, x)])

by [1, Theorem 8.6.2, p. 156].

LEMMA. Ifz is in S, then theve exists an open ball W lying in S and having
center z such that lim F_(x) (v — 0) exists and is approached uniformly for all x
in W.

Proof. Let U denote an open set in M, containing (0, z), such that f and f, are
uniformly continuous on U. Choose @ > 0 and t > 0 so that (s, x) is in U and

|1-fxs, x| <1/2 for |x-z|| <aand0<s <t,
and so that |f(t, x) - x|| <1 for |x - z]|| < @. Let W denote the open ball with cen-
ter z and radius a. For x in W, let

t
T, = (/9| ty(s, W ds.
0

Then [I- T,| <1/2 and Ty is invertible for x in W. Also, | T,y| > |y|/2 for
y in X and x in W. Choose 6 > 0 so that (v, f(s, x)), (s, f(v, X)), and (s + v, x)
arein M for 0<s<t, xin W,and 0<v<d. For 0<v<d and x in W, let

t
) = (1/0) | F (i(s, x)as,
0

P, (x) = H,(x) - T F(x),
. P, (x)/ " F(x) ]| for F (x) #0,
Q) -

0 for Fv(x) =0.

Then
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t

S [£(s + v, %) - £(s, x)] ds

0

tvH (%)

tt+v v t
= S f(s, x)ds - SO (s, x)ds - ‘S;f(s, x)ds

\'4

St+vf(s, x)ds - Svf(s, x)ds

t 0

SV [£(s +t, %) - £(s, x)] ds = Sv[f(t, #(s, x)) - £(s, ¥)] ds,
0

()
so that

v
H,) = (1/v) | Fyles, 0)as,
0
and H_(x) — F(x) as v — 0, uniformly for x in W. Moreover,

1Pyl < /0 (T IFis, =) - 1,6, D F ] ds,
0

so that
“ Qv(x) " S_ sup "fZ(S’ X) - fZ(S! Y)“ )

where the supremum is taken for s in [0, t] and y in [x, £(v, x)]. Therefore,
Qy(x) = 0 as v — 0, uniformly for x in W, Thus, for sufficiently small v, we have
the inequalities

B, < |F@[ +1 < @+1)t,
IT,F,@| - [F@ - 1Q®| < @+ 1),
T, F| > [Fr.@l/2, le®| <1/4, |F&®|/4 < t+1)/t

for all x in W. Therefore Py(x) — 0 uniformly for x in W, so that Ty F,(x) — F.(x)
and F (x) — T F(x) un1form1y for x in W, This completes the proof of the lemma.

To complete the proof of Theorem 1, let
F(x) = lim F,(x) v—0)
for all x in S, K follows from [3, Theorem 3.18.1, p. 113] that F is continuously

(Fréchet) differentiable on S. I (s, x) is in M, then (v, f(s, X)) and (s + v, x) are
in M for sufficiently small v, and

f(s + v, x) - £(s, %)
v

= F(i(s, %)) — F(i(s, ).
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This completes the proof of Theorem 1.

Proof of Theovem 2. By [1, Theorem 10.8.1, p. 299], there exist, for each z in
S, a positive number r and an open ball V lying in S and having center z, such that
the system

has a unique solution on [0, r) X V that is uniformly continuous. We may take r
small enough so that the solution g takes [0, r) X V into S. Let M be the union of
such sets [0, r) X V. Since the solutions are unique on each set [0, r) X V, there is a -
single solution (we shall denote it by g) that is defined on all of M, and this solution
is a locally uniformly continuous function from M into S. By [1, Theorem 10.8.2,

p. 300], g has a continuous second-place partial (Fréchet) derivative g, . Since g is
also a solution of the integral equation

t
gt, x) = x+ 5 G(g(s, x))ds,

0
we may differentiate to obtain the relation
t
gxt, ® = I+ | GUe(s, x)eys, x)as.
0

This differentiation makes use of the rule for differentiation under the integral sign
[1, Theorem 8.11.2, p. 172] and the chain rule for derivatives [1, Theorem 8.2.1, p.
145]. Now, [1, Theorem 10.8.1, p. 299] applies again and yields the local uniform
continuity of g,. I x is in S and (t, x) is in M, let

a(s) = g(s +t, x) for (s +t, x) in M,

B(s) = g(s, glt, x)) for (s, g(t, x)) in M.
Then ‘
a'(s) = g (s +1, x) = Gla(s)), a(0) = g(t, x),

B'(s) = g(s, glt, x)) = G(B(s)), B(0) = g(0, g(t, x)) = g(t, x),

so that a(s) = B(s) for all s common to the domains of @ and B, by [1, Theorem
10.8.1, p. 299]. This completes the proof of Theorem 2.
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