ALMOST LOCALLY FLAT IMBEDDINGS OF MANIFOLDS

J. C. Cantrell and C. H. Edwards, Jr.

1. INTRODUCTION

By an almost locally flat imbedding of one manifold in another we mean an im-
bedding that is locally flat except possibly at countably many points. We are con-
cerned with the question as to whether almost locally flat imbeddings of manifolds
are actually locally flat at every point, under appropriate dimensional restrictions.

In Theorem 2.4 it is shown that, for an imbedding h of a k-manifold in an n-
manifold in the so-called “trivial” range of dimensions n > 2k + 2, the assumption
that h is almost locally flat does imply that h is locally flat at every point. The
authors have previously considered the cases k =1 and k = 2 of this theorem (see
[3], [5], and [8]). The proof of Theorem 2.4 employs J. Stallings’ result to the effect
that, for n > 5 and k <n - 3, a k-sphere that is topologically imbedded in the n-
sphere cannot fail to be locally flat at a single point [16] (in other words, cannot be
locally flat everywhere with the exception of precisely one point).

It is well-known that a simple closed curve or 2-sphere imbedded in Euclidean
3-space E> can fail to be locally flat at a single point (see [9], for instance),
whereas Cantrell has proved that an (n - 1)-sphere which is imbedded in the n-
sphere S® cannot fail to be locally flat at a single point if n > 3 [4]. In Section 4
we show that, for each n > 3, S™ contains a topological (n - 2)-sphere which fails
to be tame but is locally flat except possibly at a single point. Thus, for imbeddings
of S¥ in S™, local flatness except at a single point implies tameness if and only if
n>3 and k #n - 2,

In Section 3 we show that, if M and N are two topological manifolds such that no
imbedding of M in N fails to be locally flat at precisely one or two points, then
every almost locally flat imbedding of M in N is locally flat at every point. Finally,
polyhedral imbeddings of the 4-sphere S4 in S™ are discussed in Section 5.

If M is a k-dimensional submanifold of the n-manifold N, then M is said to be
locally flat at the point p € M if there exists a neighborhood U (in N) of p such
that the pair (U, U N M) is homeomorphic to the pair (E®, EX). An imbedding h of
the manifold M into the manifold N is said to be locally flat at the point x € M if
h(M) is locally flat at h(x). An imbedding or submanifold is called locally flat if it
is locally flat at every point. A closed subset P of a complex K is said to be fame
if there exists a homeomorphism f of K onto itself such that f(P) is a subcomplex
of some subdivision of K. A topological k-sphere S (k-cell C) in E" is flat if
there exists a homeomorphism g of E™ onto itself such that g(S) is the boundary
of a (k + 1)-simplex (such that g(C) is a k-simplex).

By a combinatorial n-manifold we shall mean one without boundary, in other
words, a connected separable metric space that is triangulated as a simplicial com-
plex in which the link of each vertex is a combinatorial (n - 1)-sphere.

Received November 14, 1964,
This research was supported by the National Science Foundation, Grant 23790.
The second-named author is an Alfred P. Sloan Fellow,

217



218 J. C. CANTRELL and C. H. EDWARDS, JR.
2. IMBEDDINGS IN THE TRIVIAL RANGE

If f is a piecewise linear mapping of the complex K into the complex L, we
define the singular set S(f) of f as the closure of the set of points x € K such that
f-1#(x) contains more than one point. We quote first the following well-known
general position lemma.

LEMMA 2.1. Let K be a finite k-complex, Ky a subcomplex of K, and M a
combinatovial n-manifold (k < n). If f is a piecewise linear map of K into M such
that { | Ky is a homeomorphism, and € > 0, then theve exists a piecewise linear
map g of K into M such that

a) d(f(x), g(x)) < ¢ for each x € K,
b) f(x) = g(x) if x € Ko,
c) the dimension of S(g) is at most 2k - n.

A proof of a generalization of Lemma 2.1 may be found in [12] or in Chapter 6 of
[18].

In proving that an almost locally flat imbedding in the trivial range is locally flat,
the first step is to show that if such an imbedding fails to be locally piecewise linear
at an isolated point, then it is nevertheless locally flat there. This is done (with a
slight dimensional improvement) in the following lemma.

LEMMA 2.2, Let h be an imbedding of a combinatorial k-ball B in E™, wheve
k>2 and n > 2k+ 1. If h is locally piecewise linear except at a single point
p € Int B, then h is locally flat at p.

Proof. Consider B as imbedded in a combinatorial k-sphere SX, and denote by
sk-1 the combinatorial (k - 1)-sphere Bd B and by C the combinatorial k-ball
C1(Sk - B). Since n - k > 3, E. C. Zeeman’s result on unknotting combinatorial
spheres [17] implies that the piecewise linear imbedding h: Sk-1 — E™ can be ex-
tended to a piecewise linear imbedding h' of C into E™, and we may assume that
h(p) ¢ h'(C). Then h and h' together define a map f of Sk into E™ that is locally
piecewise linear except at the single point p.

However, f may have singularities in sk - p. To eliminate these, choose com-
binatorial k-balls A and A in S¥ such that Ag N S(f) =@ and p € Int A C Int Ag,
and let Sk be subdivided so as to contain A and A; as subcomplexes. Define

K=8-IntA and Ky= Ag-IntA,

and choose € > 0 less than the distance from f(A) to f(K - Kg). Then Lemma 2.1
yields a piecewise linear imbedding g of K into E"™ such that

gl|Ky=1f|K, and g(K-K; Nf(A) = 9.

Hence g and f | A together define an imbedding ¥ of Sk into E that is locally
piecewise linear except at p. It therefore follows from Zeeman’s theorem [17] on
the unknotting of combinatorial ball pairs that ¥ is locally flat except possibly at p.
Stallings’ result [16] now implies that ¥ is also locally flat at p. Since the topo-
logical k-sphere ¥(SK) contains a neighborhood (in h(B)) of h(p), it follows that h
is locally flat at p.

Using H. Gluck’s modification [10] of a theorem of T. Homma [13], Gluck [10]
and C. Greathouse [11] have shown that if f is a locally flat imbedding of the closed
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combinatorial k-manifold M in the combinatorial n-manifold N, where n > 2k + 2,
then, for each € > 0 and each neighborhood U of f(M), there exists an £-homeo-
morphism h of N onto itself such that hf is piecewise linear and h ] N-U=1.
The following local version of this result is proved in [8], with the minor difference
that there it is stated in terms of imbedded submanifolds instead of imbeddings of
manifolds.

LEMMA 2.3. Let h be an imbedding of the compact combinatorial k-manifold
M with boundary in the combinatorial n-manifold N, wheve n > 2k + 2, such that h
is locally flat at each point of the open subset G of Int M. Then, given € > 0 and a
neighborhood U of h(G) in N, theve exists an e-homeomovphism g of N onto itself
such that gh is locally piecewise linear at each point of G and g | (N - U) U h(M - G)
is the identity,

LEMMA 2.3 now enables us to apply Lemma 2.2 to almost locally flat imbeddings.

THEOREM 2.4. Let h be an imbedding of a topological k-manifold (not neces-
sarily triangulated) M in a topological n-manifold N, with n > 2k + 2, and denote by
E the set of points at which h is not locally flat. Then E contains no isolated poinis
and is thevefore eithev empty ov uncountable.

Proof. Suppose, to the contrary, that p is an isolated point of E. Let U be a
Euclidean neighborhood of h(p) in N, sufficiently small so that G = h-1(U) is con-
tained in a Euclidean neighborhood (in M) of p that contains no other point of E.
Then Lemma 2.3 yields a homeomorphism g of N onto itself such that gh is
locally piecewise linear (relative to arbitrarily assigned combinatorial triangula-
tions of G and U) at each point of G - p. Since p lies interior to a combinatorial
k-ball B such that B C G and gh(B) C U, Lemma 2.2 implies that the imbedding gh,
and therefore h, is locally flat at p (actually, Lemma 2.2 applies only if k > 2; in
the case k = 1 we use [5]). This contradiction proves that E contains no isolated
points. That E must then be either empty or uncountable then follows from the fact
that every nonempty closed perfect subset of a manifold is uncountable.

COROLLARY 2.5. If f is an almost locally flat imbedding of the closed com-
binatovial k-manifold M in the combinatorial n-manifold N (n > 2k + 2), then,
given € > 0 and a neighborhood U of 1(M) in N, theve exists an €-homeomovphism
h of N onto itself such that h ] N -U=1 and hi: M — N is piecewise linear.

Proof. This follows immediately from Theorem 2.4 above and Theorem 8.1 of
[10].

COROLLARY 2.6. Ewvery almost locally flat imbedding of SK in §2K+2 4o flat.

This follows immediately from Corollary 2.5 and the fact that any piecewise
linear imbedding of sk in §2kt2 g flat.

3. A REDUCTION OF THE PROBLEM

The purpose of this section is to show how the problem of proving that almost
locally flat imbeddings are locally flat can be reduced to proving that an imbedding
cannot fail to be locally flat at precisely one or two points.

LEMMA 3.1 (Rosen [14]). If A is a countable compact subset of E®, then there
is a flat avc in E™ that contains A.

A subset X of an n-manifold M is said to be cellular in M if M contains a
sequence {Q};il of closed n-cells such that Qi+l C Int Qi for each i > 1 and
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oC
such that X = ﬂiZl Qi . The proof of the following lemma is easy and we therefore
omit it.

LEMMA 3.2. If X is cellular in the manifold M, then the decomposition space
M/X (obtained by collapsing X to a point) is homeomorphic to M.

Let R denote the closed ray consisting of the points x € E! with x> 0. An arc
L in a topological n-manifold M will be said to be locally flat at the point p € L if
p has a neighborhood U such that the pair (U, UN L) is homeomorphic either to
(E™, R) or to (E™, El), according as p is or is not an endpoint of L.

LEMMA 3.3. If L is a locally flat arc contained in the topological n-manifold
M, then L is cellular in M.

Proof. For a Euclidean space M the lemma is known ([2], [5]). We can there-
fore establish the lemma by showing that some open n-cell in M contains L.

Let a and b be the endpoints of L, and order the points of L. from a to b. Let
x be the least upper bound of the set of points y € L such that Ly, the subarc of L
from a to y, is contained in an open n-cell Uy. We have only to show that x = b
(clearly x > a). If x < b, we select an open n-cell neighborhood V of x such that
(V, VN L) ~ (E?, El). Let z be a point of VN L (z < x), and let U, be an open
n-cell in M such that L, C U,. Let h be a homeomorphism of M onto itself such
that

h|M-V)=1, hL)=L, h(z)=x.

If z; € L is such that zy € U, and z < z; <x, then h(U,) is an open n-cell con-
taining Lh(zl)’ and h(z;) > x. This contradiction implies that x = b.

LEMMA 3.4. Let L be an avc contained in a topological n-manifold M (n > 3),
and let E be the set of points at which L fails to be locally flat. If E is not empty,
then E is uncouniable.

Proof. Suppose E is not empty. We show that E is uncountable by showing that
there are no isolated points of E. If x is an isolated point of E, we let U be an
open n-cell neighborhood of x such that E N U = x, and we let L. be a subarc of L
such that x € L, and L. € U. We then have an arc in a Euclidean space of dimension
n > 3 that is locally flat except at one point. But this is impossible by [5], and it
follows that E is uncountable.

THEOREM 3.5. Let M and N be topological manifolds, with M compact, such
that no imbedding of M into N fails to be locally flat at precisely one orv two points.
Then every almost locally flat imbedding of M into N is locally flat.

Proof. Let f be an almost locally flat imbedding of M into N, and let E be the
set of points at which f(M) fails to be locally flat. If E is not empty, we use the
Doyle-Hocking construction (see the proof of Theorem 1 of [7]) to obtain a set
U C £(M) such that U is topologically equivalent to E¥ (k = dim M) and U contains
the compact countable set E. We let a be an isolated point of E and use Lemma 3.1
to select an arc L, flat in U, such that E -a C L and a ¢ L. Since L is locally flat
in f(M) at each point and f(M) is locally flat in N at each point of L - E, it follows
that L is locally flat in N at each point of E - a. By Lemma 3.4, L is locally flat
in N at every point, and by Lemma 3.3 it then follows that L is cellular in N.

If ¢: M — M/f-(L) and ¥: N — N/L are the natural projection maps, then, by
Lemma 3.2, ¢(M) and ¥(N) are topological copies of M and N, respectively. The
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imbedding f: M — N induces an imbedding g: ¢(M) — ¥(N) such that ¥f = g¢, and
clearly g is locally flat except possibly at the two points ¢f-1(a) and ¢f-1(L). But
then the hypothesis of the theorem implies that g is locally flat at every point.
Since ¢ and ¥ restrict to homeomorphisms on neighborhoods of f-1(a) and a, re-
spectively, it follows that f(M) is locally flat at a after all. This contradiction
shows that E is empty, so that f is locally flat at every point.

4. IMBEDDINGS OF SPHERES WITH CODIMENSION TWO

The purpose of this section is to demonstrate that, for each n > 3, there exists a
wild (n - 2)-sphere in E™ that is locally flat except possibly at a single point.

LEMMA 4.1. If K is a compact vectilinear complex in S™, then m,(S™ - K) is
finitely genevated.

Proof. Let R be a regular neighborhood of K in S®. Then 7;(S"™ - K) is iso-
morphic to 77 (S™ - Int R), since S™ - Int R is a deformation retract of 8™ - K. But
S™ - Int R is a compact polyhedron; hence its fundamental group is isomorphic to its
edge-path group and is therefore finitely generated.

The proof of Theorem 1 of [1] can be applied directly to establish the following
lemma.

LEMMA 4.2. Let S be a topological (n - 3)-spheve in En-1 , and let T be the
suspension of S in E™, Then m)(E® - T) is isomorphic with 7 (E*~! - sS).

LEMMA 4.3. For each n> 3 there exists a topological (n - 2)-sphere S2-2 4
E" that is locally flat except possibly at a single point, and such that 7, (E" - sn-2)
is not finitely genevated.

Proof. To begin the inductive proof, consider the wild arc A (the “mildly wild”
2-frame) of Debrunner and Fox [6]. By connecting the endpoints of A with a poly-
gonal arc we obtain a wild 1-sphere S! in E3 such that S! is locally flat except at
a single point and 7;(E3 - S!) is not finitely generated.

Now assume that Sk-2 is a topological (k - 2)-sphere in EK such that S¥-2 is
locally flat except possibly at the point p € S¥-?% and such that 7;(E¥ - $k-2) is not
finitely generated. If T is the suspension of sk-2 jp EkH, then it follows from
Lemma 4.2 that 171(Ek+1 - T) is not finitely generated. If the arc L is the suspen-
sion of the point p, then it is clear that the (k - 1)-sphere T is locally flat at each
point of T - L.

Now let ¢ be the projection of EX*l onto EX*l /L. Since the arc L is cellular
in both EXtl and T, it follows from Lemma 3.2 that ¢(EX*1) is a copy of Ektl and
that Sk-1 = ¢(T) is a topological (k - 1)-sphere. Furthermore, S¥-1 is locally flat
except possibly at the single point ¢(L), and # 1(¢(Ek+1) - sk-1) ig not finitely gen-
erated, because ¢(EXT1) - sk-1 j5 homeomorphic to EXtl - T, This completes the
inductive proof.

The existence of the desired examples now follows immediately from Lemmas
4.1 and 4.3.

THEOREM 4.4. For each n > 3 there exists a topological (n - 2)-sphere sn-2
in E™ that is not tame but is locally flat except possibly at a single point.

We are unable to determine whether, for n > 4, S™-2 does in fact fail to be
locally flat at the exceptional point p. I SP-2 were actually locally flat at p, for
n > 4, then S™-% would be a wild locally flat (n - 2)-sphere in E-,
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5. POLYHEDRAL IMBEDDINGS OF THE 4-SPHERE

Throughout this section, let T be a combinatorial triangulation of the n-sphere,
and let K denote a subcomplex of T that is homeomorphic to S%. Rosen has shown
in [14] that, if n = 5, it follows that K is flat. It is well known that this conclusion
does not follow in the case n = 6 (for example, if K is the 4-sphere in S© obtained
by suspending three times the trefoil knot in S3 , then Lemma 4.2 implies that K is
not flat). We discuss here the cases n > 7.

LEMMA 5.1. If n> 17, then K is locally flat except possibly at its vertices.

Proof. Consider a vertex v of K. Let X =1k (v, T) (the link of v in T) and
Y = 1k (v, K). Then Y is a combinatorial 3-manifold [15, p. 240]. If p is a point of
the open star of v in K, other than v, then there exists a unique point q of Y such
that the line segment vq contains p. By subdividing, if necessary, we may assume
that q is a vertex of T. Let

B*-! = St(q, X) and B3 = St(q, Y).

Then (B"-!, B3) is a combinatorial (n - 1, 3)-ball pair. Since n - 4 > 3, it follows
from [17] that B3 is piecewise linearly unknotted in B2-1, Therefore the combina-
torial (n, 4)-ball pair (vB®-1 vB3) is unknotted. Since p € Int vB3 and vB3 c K,
it follows that K is unknotted at p. Since each point of K lies interior to some
vertex star, this implies that K is locally flat except possibly at its vertices.

A topological k-sphere in S™ is said to be weakly flat if its complement in S™
is homeomorphic to the complement of a standard k-sphere (the boundary of a
linear (k + 1)-simplex).

THEOREM 5.2, If n > 1, then K is weakly flat in S™, and if n > 10, then K is
flat in S™.
Proof. The second part follows immediately from Lemma 5.1 and Theorem 2.4.

In the case n > 7, choose an arc L C K, as in the proof of Theorem 3.5, that
contains all the vertices of K and is cellular in both K and S®, Then K/L is a 4-
sphere in the n-sphere S™/L, locally flat except possibly at a single point. It
therefore follows from [16] that K/L is flat in S®/L. But since S® - K is homeo-
morphic to S?/L - K/L, it follows that K is weakly flat in S™.

The referee has pointed out that the first half of Theorem 5.2 also follows from
Theorem 2' of [14], together with Lemma 5.1 above.
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