THEOREMS ON BREWER AND JACOBSTHAL SUMS. II

Albert Leon Whiteman

1. INTRODUCTION
Let V_(x) be the polynomial determined by the recurrence relation
Voo(® =xV_(x)-V (x} @=1,2 )
with V;(x) = x, V,(x)=x% - 2. In a recent paper [1], B. W. Brewer has defined the
sum
p-1
A, = 27 X(V(s),

n
s=0

where x(s) denotes the Legendre symbol (s/p) and p is an odd prime. It is easily
verified that A} = 0, A, = -1. Brewer evaluated A3, A4, and Ag5. For a summary
of the results pertaining to A3 and A4, see Part I of the present paper [9].

The results for the sum Ag = Eg;l x(s(s4 - 582 + 5)) are as follows.
If p= 3(mod4) or if p = + 2 (mod 5), then A5 = 0.

If p=20f+1=u?+5v2=x%+4y2 with x = 1 (mod 4), then A5 =0 if 5 | x, and
Ag=-4u if 5} x and u = x (mod 5).

If p= 20f+ 9 =u? + 5v% = x%+ 4y 2 with x = 1 (mod 4), then A5 = 0 if 5 | x, and
Ag =4u if 5} x and u = x (mod 5).

Moreover, the following congruences modulo p hold:

n
n

10£\ (10f\ _ , 2 (10f _ (,10f B
(1.1) (f)(3f = 4u”, ¢) = (g (p = 20f + 1),
10f+4\ /10f+4\ _ . 2 10£+4Y _ . (10f+4 _
(1.2) ( £ )(3f+1 = 4u”, ( £ )‘i(3f+1 (p = 20f + 9).

Brewer bases his method for evaluating As upon the congruences in (1.1) and
(1.2). The purpose of the present paper is to derive the results for Ag without em-
ploying these congruences. In Part I, which has been published elsewhere [9], the
following theorems are established. Theorem 1 gives the value of A5 when
p = +2 (mod 5). Theorem 2 gives the value of A5 when p = 20f + 1. Theorem 3 is a
statement of the two congruences in (1.1) together with a resolution of the ambiguous
sign in the second congruence. Let p = 20f + 1 and put p = X% + 4y%. Theorem 3
asserts that then the ambiguous sign is plus if 5 X x and is‘minus if 5 | X.

The theory of cyclotomy modulo a prime p = ef + 1 leads, for e = 20, to the case
p = 20f + 1. The method of [9] is based on this theory and was suggested by Cauchy’s
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proof [2] of (1.1). A basic tool in the argument is a lemma of Brewer (see Lemma 1
in the next section).

In Part II, which is now presented, a theory of cyclotomy modulo a prime
p=E(2f+ 1) - 1 is developed. For E = 10, this leads to the case p = 20f + 9 (see
Section 4). The method involves the factorization formula (3.5), which expresses p
as the product of two complex factors composed of (2E)th roots of unity.

The sum A (8") defined in Theorem 1 is an Eisenstein sum [3]. Its role is analo-
gous to that of the Jacobi sum (8™, B@) discussed in [9]. The coefficient a; in the
expansion (3.10) of A(B™) is analogous to the coefficient B(i, v) in the corresponding
expansion of Y(8V™, B™) (compare formula (3.6) in [9]). For some properties of the
numbers a;, see Lemmas 3, 4, and 5 in Section 3. The sum A, defined in (3.27) re-
sembles the sum V¥, , defined in Part I [9, formula (3.19)]. The divisibility prop-
erties of A, are given in Lemma 6.

The main results in Section 4 are as follows. Theorem 2 gives the value of As
when p = 20f + 9. Theorem 3 is a statement of the two congruences in (1.2), to-
gether with a resolution of the ambiguous sign in the second congruence. Let
p=20f+ 9, and put p = x% + 4y2 . Then Theorem 3 asserts that the ambiguous sign
is plus if 5 ,}’ x and is minus if 5 I X.

2. TWO LEMMAS

Let p be an odd prime, and let y denote a generator of the multiplicative group
of the field GF(p?%). For £ € GF(p2), put

(2.1) tr(£) = £+ £°,

so that tr(£) € GF(p). If £ # 0, let £ be the unique solution of the equation £EE=1.
The number 6 = yP-l satisfies 6P+l = 1 and therefore 6 = 6P . Thus, for n> 1,
tr(6™)=06"+ 06",

The following lemma of Brewer [1, Lemma 2] is fundamental.

LEMMA 1. Put 6 =Pl Let the sums A, , Q,,®, be defined by

p-1 p-1 p+l
(2.2) A, = 2 x(Va(s)), 9, = 2 x(" +8), @, = 2 (6" + 57,
s=0 h=1 k=1

Then

20, = Q_ +©_.

I

This lemma is proved both in [1] and in [9].
We shall also make use of the Jacobsthal sum [7]
p-1
(2.3) #(n) = hzf; x(h) x(h* +n).

The classical theorem of Jacobsthal [4] is the remarkable identity stated in the next
lemma.
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LEMMA 2. Let p =1 (mod 4), and let N be an integev such that x(N) = -1.
Then
2 2
- (#), (20)
2 2 ’
where ¢(1)/2 = -1 (mod 4).

3. CYCLOTOMY modulop =E(2f+1) - 1

If v is a primitive root of GF(pZ) then -yP"'l = g is a primitive root of GF(p).
For £ € GF(p?) (£ #0), let ind £ be the 1ndex of £ to the base v, defined
modulo p? - 1 by means of the equation Y"3¢= ¢, Let e | p2 - 1, and let
B = exp(27i/e) be a primitive eth root of unity. The Lagrange resolvent 7(B™) over
GF(p?) is defined by

nindECtr(E)

(3.1) 7(B") = 2, B

£eGF(p?)

where ¢ = exp (27i/p) and the summation extends over all numbers of GF(p%) ex-
cept 0. By a theorem of Stickelberger [6, p. 335] we see that

(3.2) (g™ 7(8™™) = prind(-1) p2,
if n is an integer not divisible by e. It is easy to construct a proof of (3.2) similar

to the proof of the corresponding result in GF(p) (see the proof of Satz 979 in [5]).

Let N be a quadratic nonresidue of p. The polynomial P(x) = x2 - N is irre-
ducible in the finite field GF(p) of residues modulo p. Hence the residues a + bx
(a, b € GF(p)) modulo P(x) form a finite field GF(p?2). In what follows it will be
convenient to use this concrete representation of GF(p )

The principal result of this section is given in the following theorem.

THEOREM 1. Let E | p+ 1 and put e = 2E, so that e | p® - 1. Suppose that
(p+ 1)/E is odd, and put p+ 1 = ef+ E. Then the sum

p-1
(3.3) A(Bn) - Bnlnd(l-t-bx)
b=0
has the properties
(3.4) B = (- 1?21 (n cven, e I n),
(3.5) MBIMB™) =p  (n odd).

Proof. Tt is convenient to introduce character notation. If £ € GF(p 2) we put

B (¢ z0),

0 (¢ =0).

x(§) =
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Thus ¥ is an eth power character of GF(pZ). We now write (3.3) in the alternate
form

p-1

(3.6) AMBY) = 22 x'(1+bx).
b=0

For a € GF(p) (a # 0), put gd = a. Then x(a)=8 (p+1)j = (-1)}. This means that the
character x(a) reduces to the ordinary Legendre symbol (a/p). Thus, if a # 0, we
have the relations

p-1 p-1 p-1
22 X"+ bx) = x®(a) 22 xP(a+abx) = x(a) 20 x'(a+bx).
b=0 b=0 b=0

We next note the familiar result

p?-1 (e ]|n),

(3.7) 27 XX =
£ €eGF(p?) 0 (e f n).
Let & = a + bx, where a, b € GF(p). Then the left member of (3.7) becomes
p-1 p-1 p-1 p-l' p-1
27 22 ¥*Ma+bx) = 22 X*bx)+ 2 22 x*(a+ bx)
a=0 b=0 b=0 a=1 b=0
p-1 p-1 p-1
= x"®) 27 X'b)+ 27 x(a) 27 X*(1+bx).
b=0 a=1 b=0

To prove (3.4), assume that n is even and e J n. Then by (3.6) and (3.7) we get
(p - DX"(x) +(p - 1)MB") = 0.
Since
() = (xEE)Y2 = (xN)Y/2 = (-1)7/2,

the relation in (3.4) follows at once.

By (2.1), tr (a + bx) = 2a. Expressing (3.1) in terms of characters, we have the
equation

p-1 p-1 p-1 p-1
T(B") = 2 xn(a.+bx)§Za = 27 xn(bx)+2 27 xn(a.+bx)§2'a
a,b=0 b=0 a=1 b=0
p-1 p-1 p-1
= X"(x) 2 X"0)+ 2 X(@)E** 2 X1+ bx).
b=0 a=1 b=0

To prove (3.5), assume that n is odd. Then the last equation reduces to
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(3.8) 7(B™) = x(2) GA(BD),

where G = 22;(1) x(a) £? is the familiar Gauss sum. It is well known that G%= x(-1)p.

In (3.8), replace n by -n. Then (3.2) yields (3.5). This completes the proof of the
theorem.

The hypothesis of Theorem 1 will be assumed throughout the rest of this section.
We remark that in the special case where E =4 and n = 1, Theorem 1 reduces to a
theorem of Eisenstein [3]; see also [8, Lemma 2].

In the application of Theorem 1 we shall require the additional relation
(3.9) A(B) = A™E-1))  (p+1=ef+E).

To prove (3.9), let & = 1+ bx, where b € GF(p). Then of =1 - bx. Hence

p-1 p-1
2 X1 -bx) = Dx@P) = DxPYa) = 2 xE V1 4 px),
b=0 o o b=0

where the second and third summations extend over all p @. Using (3.6), we obtain
(3.9) at once.

In (3.3), collect the exponents of 8 that are in the same residue class modulo e.
Then we may write

e-1
(3.10) AB") = 2 aiBni,
i=0
where a; is the number of values of b (b=0, 1, ---, p - 1) for which
ind (1 + bx) =i (mod e). The following lemma is analogous to Lemma 3 in [9].
LEMMA 3. Let p+1=ef+ E with e = 2E. Then
2f (i=E/2),

(3.11) ai"‘ ai+E =
2%+1 (0<i<E-1,1i#E/2).

Proof. For each £ = a + bx with a, b € GF(p) we define a mapping £ — o(£) as
follows:

l1+abx (a+#0, aa=1),
a(£) =
0 (a=0).
It is evident from this definition that
(3.12) 25 =tr(&)o(§) (tr(§) #0).
If y is a primitive root of GF(p% ), then k = (p + 1)/2 is the only value of k in

the interval 1 <k <p + 1 for which o(yX) = 0. We now show that the set of p num-
bers

o) (@A<k<p+1, k#(p+1)/2)
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is a permutation of the set of p numbers
1+bx (b=0,1, -, p-1).
Assume the contrary. Let m, n be two integers such that o(y™) = o(y™) with
1<m,n<p+1, m+#(p+1)/2, n#(p+1)/2, m#n.
If we put Y™ = a + bx and y" = ¢ + dx, then we get y™ = acy™. Since k=p+1 is

the smallest positive integer such that 'yk € GF(p), we have a contradiction.

The coefficient a; in (3.10) may now be defined as the number of values of k
(1<k<p+1, k #(p+1)/2) for which ind o(y%) =i (mode). Let 0<i<E -1, K
k =i (mod E) and k # (p + 1)/2, then ind o(y¥) is congruentto i orto i+ E
(mod e); if k = (p + 1)/2, then k = E/2 (mod E) and o(yX) = 0. Since p + 1= E(2f + 1)
the interval 1 <k < p+ 1 contains 2f + 1 integers k such that k =i (mod E). Con-
sequently

2f (i=E/2),
aj +aj+g =
2f+ 1 i+E/2).
This establishes (3.11) and completes the proof of the lemma.

The coefficient a; in (3.10) has been defined as the number of values of b
(b=0,1, ---, p - 1) for which ind (1 + bx) =i (mod e). Formula (3.13) in the next
lemma provides another means for determining a;.

LEMMA 4. Let p+1=ef+E. Lety be a primitive voot of GF(p?), and put
6 =Pl Let b; (0 <i< e -1) denote the number of integers k (1 <k <p+1,
k #(p+ 1)/2) such that ind (6% + 1) =i (mod e). Then

b

1

(x(2) =1, i even; or x(2)= -1, i odd),
(3.13) a; =
biyr (x(2) =1, i odd; or x(2)= -1, i even).
Proof. By (2:1) we have the equation
(3.14) tr(6X+1) = (85 +1)(8%+1).
Therefore the only value of k in the interval 1 <k <p + 1 for which tr(6+1)=0

is k=(p+1)/2. Hence (60X +1)#0if 1<k <p+1 and k # (p + 1)/2. Moreover,
since

(6% + 1)P = kP 1 = gP-K*1 gk 1),
it follows that
(3.15) (6% +1)P-1 = gP-k*+l (1 <k<p+1, k#(@+1)/2).
We now assert that the set of p numbers
0(65+1) (A<k<p+1, k#({+1)/2)

is a permutation of the set of p numbers
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1+bx (b=0,1,-,p-1).

Assume the contrary. Let m, n be two integers such that ¢ (6™ + 1) = g(8" + 1)
with

1<m,n<p+1, m=#(p+1)/2, n+(p+1)/2, m+#n.

If weput 6™ +1=a+bx and 6™ +1 =c + dx, then 6™+ 1=ac(6™+ 1). Raising
both members of the last equation to the (p - 1)st power, we get, in view of (3.15),
gP-m+l - gp-n+l 554 hence m = n. This contradiction proves the assertion.

We have just established that the coefficient a; in (3.10) is the number of inte-
gers k (1<k<p+1, k #(p+ 1)/2) such that x(0(6%¥ 4 1)) = B1. On the other hand,
b; in Lemma 4 is the number of integers k (1 <k <p+1, k #(p + 1)/2) such that
x(6% + 1) = 1. It remains to show that a; is related to b; by means of (3.13).

From the relation 78 = 4P we deduce that tr (%) = 9%(6¥ + 1). This leads to the
formula

(3.16) x(6¥ +1) = gle-Drytr X)) (1 <k <p+1).

If k= (p+ 1)/2, both meinbers of (3.16) vanish; otherwise, x(tr(v¥))=+1. Conse-
quently,

x2(6% +1) = gle-2)% sk 2 (p+1)/2.

Now write (3.14) in the form tr (6X + 1) = 8K(6% + 1)2. Since x(8%k) = g(E+2)k jt
follows that

(3.17) Xtr(e¥+1)) = (-1)* (1 <k<p+1, k#(p+1)/2).
Next take & = 6X + 1 in (3.12). Making use of (3.17), we get
(3.18) x(0(65 + 1)) = (-)Xx@)x(65+1) (1 <k<p+1).

We note that both sides of (3.18) vanish for k = (p + 1)/2.

Finally, let 0<i<E - 1. By (3.16), if k =E - i (mod E) and k# (p + 1)/2, then
x(6% + 1) has one of the values B1 and B¥*1 and k =i (mod 2). As an immediate
consequence of (3.18), we may now deduce (3.13). The proof of the lemma is thus
complete.

We return to the sum ®, defined in (2.2). Our object is to express this sum in
terms of. the coefficients a;. For this purpose it is convenient to introduce the re-
lated sum

pt+l

(3.19) O,() = 2 x(6" " +1) (1<i<p+1).
k=1

Note that if the integer n is such that x(8™) =1, then &= @"zn("()).

For p+ 1= ef + E, we have the relation x(6") = B(E'Z)n , So that x(6™) =1 if
(E - 2)n =0 (mod e). In particular,
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E = 2(mod4) and n=E/2, or
x(6™) =1 if
E = 0(mod4) and n=E.

Thus, if E = 2 (mod 4), then O/, = @g(0). Again, if E = 0 (mod 4), then
B = ©,:(0). We also note that ©®,(0) = ®(0), since the set of numbers
2E, 4E, -+, 2(p + 1)E modulo p + 1 is a permutation of the set of numbers
E, 2E, ---, (p+ 1)E modulo p + 1. In summary,

I

0L (E = 0 (mod 4)),
(3.20) 0 5(0) =

®_E/2 (E = 2 (mod 4)).

It should be noted that, in view of (3.16), each term of the sum ©(0) has the
value +1, Consequently, !®(0) can be written in the form E(A - B), where A is
the number of times that the symbol x(0Ek +1) (1 <k < 2f+ 1) takes the value 1,
and B is the number of times that it takes the value -1. Since p + 1 is not divis-
ible by e, there is no value of k (1 <k < 2f + 1) for which x(6Ek + 1) takes the
value 0. It follows that p + 1 = E(A + B), and hence ©®(0) can be expressed as
follows:

(3.21) Bp(0)=-p-1+eA (p+1=ef+E).

The next lemma furnishes a formula for evaluating ®E ).
LEMMA 5. If p+1=ef +E, then

(3.22) Op(i) = -x(2)E(a; - a;, )81 (0<i<E -1).

Proof, We shall make use of the identity

(3.23) e, = pE-2He(E-i) (0<i<E-1),
which may be established in the following manner:
ptl p+l
k=1 k=1
pt+l ptl
k=1 k=1

since 0P™! = 9F(H1) _ 1 we may also write

p+1 2f+1
S -i)= 2 x(oFEIL1) =B 2 x(eFE T4,
k=1 k=1

.

For i=E/2 and k = f, we have the identity _x(BEkH_E "'+ 1) = 0. Otherwise, (3.16)
implies that each term in the last sum is equal to §* or BitE | In view of the defini-
tion of b; in Lemma 4, the sum reduces to (b; - b;+g)8*. Introducing this result in-
to (3.23), we get
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(3.24) O,(i) = Eb; - b, )BE (0<i<E-1).

With the aid of Lemma 4, it is easy to verify that (3.22) is equivalent to (3.24). This
completes the proof of the lemma.

We now establish the following corollary of Lemma 5.
COROLLARY. Letp+1=ef+ E. If E = 0 (mod 4), then

(3.25) @y = (-1)E/*E@, -ay).

If E = 2 (mod 4), then

(-1)E(a, - a5) (E = 2 (mod 8)),
(3.26) ®E/2 =
(-1)1E(@, -a;) (E =6 (mod8)).
Proof. ¥ E = 0 (mod 4), then
-1 (mod 8) if E = 0 (mod 8),
P 3 (mod 8) if E =4 (mod 8).

Hence x(2) = (-1)E/4, By (3.20), ®g = ®(0). For i= 0, (3.22) reduces to (3.25).
I E = 2 (mod 4), then

i

4f + 1 (mod 8) if E = 2 (mod 8),

pE

i

4f - 3 (mod 8) if E = 6 (mod 8).

Hence x(2) = (-1)f if E = 2 (mod 8) and x(2) = (- 1)f*! if E = 6 (mod 8). By (3.20),
Br/; = 0®r(0). For i= 0, (3.22) becomes (3.26). This completes the proof of the
corollary.

We now return to the sum A(8™) in (3.10). Put F= (p% - 1)/e. Then the number
e is the smallest positive integer such that g€ =1 and y¢F =1 in GF(p%). Thus it
is natural to define the sum

p-1
(3.27) Ay = 20 (1+bx)2F,
b=0

This means that A(B") becomes A, when B is replaced by yF .

The number A has useful divisibility properties. We shall derive the following
lemma.

LEMMA 6. Letp+1=ef+E. For 0<n <e, the number A, satisfies

@) A, = (-1™2" (mod p) (m even),
(ii) A, = 0 (mod p) (0 <n< E, n odd),
(iii) A, = x(2) (E)p—-n]f){z(n _ 1)/2) (mod p) (E<n<e, nodd).
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Proof. The number F = (p2 - 1)/e may also be written in the form
F=((p+E-1)+(E-2)/2.
It follows that the exponent nF in (3.27) can be expressed in the following manner:

nF = z + wp,

where
(e -2jf+E-1-7j (n = 2j),
z =< (E-2j-1)+(E-2)/2-]j (0<n<E, n=2j+1),
(BF - 2j - 1)+ (3E -4)/2 -j (E<n<e n=2j+1),
and
2if+j -1 (n = 2j),
w= <{(2j+1)f+] (0<n<E, n=2j+1),

(2j+1)f+j-1 (E<n<e, n=2j+1).

Hence (3:27) becomes

p-1 p-1
Ap= 22 (14+0x)2(1+bx)"P = 22 (1 +bx)*(1 - bx)”
b=0 b=0

zZ w p-1
Z 2 (2) (5) e 2t

For each pair r, s in the triple sum,
p-1 (n = 2j),
0<r+s<z+w= < (p-1)/2 (0<n<E, n=2j+1),
3(p -1)/2 (E<n<e n=2j+1).
Cases (i) and (ii) of the lemma are now readily established: Since

p-1 0 (mod p) (p-1f/m or m=0),

N/

o
8

I

b=0 -1 (mod p) -1 | m and m > 0),

the triple sum reduces to (- l)n/2+1 modulo p in Case (i) and to 0 modulo p in Case
(ii).

Case (iii) is more troublesome. Clearly it suffices to restrict the triple sum to
those pairs r, s for which r+s=p -1 and p -1 - w<r <z Since
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(3.28) ris! = (-1)5"! (modp) (+s=p-1),

the triple sum reduces in this case to

B ()3t - B gt

(z—r)'(w—s)"

where y=p-1-w=(e-2j-1)f+E-j-1. Wenextput P=(p -1)/2, r =y +1t,
s =w ~t, where 0 <t < P. This yields

P
_  zlw! P! _ zlw! P
An = - Tp E(’) DI T

Making three applications of (3.28), we obtain the equation

P! z+w+P+3 P
)&n=—x(2)(p_l_z)!(p_l_w)!('1)+++ =X(2)(y)7

which is equivalent to the result in Case (iii) of the lemma.

4, THE CASE p = 20f+ 9

For p+1=ef+ E with e = 20 and E = 10é the number B is a primitive
twentieth root of unity. Thus g8 = B - B% 4+ B% - 1. The equation (3.10) becomes

19
(4.1) MEY) = 20 ag ™,
i=0
where a; is the number of values of b (b=0, 1, -+, p - 1) for which

ind(1 + bx) = i (mod 20).

Putting d; = a; - a;,39 (i1=0, 1, *--, 9) and applying (4.1) with n=1 and n= 9, we
get

4
(4.2) A(B) = Zf) (dy; - dg) 4 + EO (dajp1 - dg)B ™,
J= J=
4 .
(4.3) A7) = E @5+ )8 + 20 (dy5,9 - a)) B
j=0

V\Qe sha%l prove that both (4.2) and (4.3) lead to a representation of p in the form
u“ 4 5v~.

By (3.9), A(B) = A(,Bg). Equating coefficients of like powers of 8 in (4.2) and (4.3),
we deduce the relations d; =dg, dp = -dg, d3 =d7, dg = -dg. Therefore
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a) -a;1] = a9 - 239, az-aj)3 = ag-ajq,
(4.4)

ap -aj, = -(ag -ag), ay-aj, = -(ag-2a;).
Also, by Lemma 3,

(4.5) agtajg =a,ta;, = agtaj,y =agta;g = agta;g = 2f+ 1,
a;+a;) =az+a;; =a;+a;; =agtag = 2+ 1, ag+a;; = 2f.
Combining (4.4) and (4.5), we find that

(4.6)
dg = 14, ag = a3, 431 T 219, 233 = ;7.

It is convenient to put 5 = 316 . Then 1+ 75+ % +n3+n*=0. Using (4.4) and
(4.5), we now transform (4.2) as follows:

AMB) = [2ag - 2 - 1 - (2a, - 2f - 1)(n% +3) + (2a, - 2f - 1) (n + n4)]
+ [2a5 - 2f - (2a3 - 2f - 1)(n? + %) + (22, - 2f - 1) (n + nH)]B®
= [2ag+a, -a, -2f -1+ (a,+a, - 2f - 1)( -2 - 3+ 1Y)
+ [2a5 +a3 -a; - 2f+(az+a; - 2 - 1)(n - 9% - > +H)]B5.
This yields the first of the following four equations.
MB%) = a+ 1>+ (c+ag%) (n - 0% - 0> + %),

ABM) = a -bp® +(c - A% (n - v - ® +9%),

(4.7)
7 5 5 2 4
AMBY =a-bp -(c-ap”)(m-n°-n +1n%),
AB3) = a+bp® - (c+dB) (- 7% - 0> + %),
where
a=-~1+2a5+a, -ay - 2f,
b= 23.5+a3—a.1—2f,
(4.8)
C= —1+a2+a4-2f,

d = -—1+a3+a.1—2f-

The remaining three equations in (4.7) may be derived in a similar manner.
Under the mapping B8 — B-1, the expression 7 - n2 - 3+ 54 is invariant and the
first equation in (4.7) goes into the second, while the third is carried into the fourth.
Under the mapping 8 — B> the expression i - 72 - n3+ n% goes into
-(n - 1% - n3+ 7%, and the first equation in (4.7) goes into the third. Clearly,
A(B1l) is the complex conjugate of A(8%), and A(813) is the complex conjugate of
AMB7). From (3.5) of Theorem 1, we deduce that
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Ay = p,  ABHABYS) = p.

It is easily verified that (n - n% - n3 + n%)2=5. By (4.7), the product A(87)r(811)
yields the equation

p = a2+ b%+5(c?+d?) + 2(ac + bd) (n -?72-773"‘?74)-

Since 77 - 'nz - n3 + 774 is irrational, the number ac + bd must vanish. The last
equation thus simplifies to

(4.9) p =a?+b%+5(c?+d% with ac+bd = 0.

In order to obtain additional properties of a, b, c, d, it is expedient to replace
the twentieth root of unity 8 by y¥, where y is a fixed primitive root of GF(p?%)
and F = (p2 - 1)/20. In the notatmn of (3.27), A(B™) becomes A,. Let the number
r = y16F correspond to = 816, Then the four equations in (4. 7) are transformed
into the four equations

Ag = a+by5F+(c+dy5F)(r -r?-r34 r4),

4.10) Aj; = a -bry5F + (c - d'ySF)(r -r2.r34 r4),
a-2F -(c-a®)r-r?-r3+1r9,

>
~J
I

1
B
]

h13=a+bry5F-(c+dy5F)(r -r3+1r9,
LEMMA 7. The equation (4.9) reduces to one of the following two possibilities:
(i) p=b%+5c®, a=d=0,
(ii) p=a%+5d%, b=c=0.
Proof. We first show that
(4.11) c and d cannot both equal zevo.
Otherwise, putting ¢ =d = 0 in (4.9) and (4.10), we get p = a?+ b? and
Xiiry3 = a?+p? (mod p).
But the product A;;A;3 cannot be divisible by p, since Lemma 6 yields

(10f+4) (10f+4

X1jAg3 = 3f+1) (mod p).

This contradiction proves (4.11).

We next show that ab = 0 If ab # 0, put -c¢/b =d/a = k. Equation (4.9) becomes
—(a +b)(1+5k) If aZ + b? lthena—Oa.ndb +1,or a=+1and b=0. I
1 + 5k% = 1, then k = ¢ = d = 0, in violation of (4.11). This proves that ab = 0.
Finally, if a=0 and d # 0, or if b= 0 and c # 0, then (4.9) implies that 5 | p, an
impossibility. The proof of the lemma is thus complete.

We shall also require a representation of p in the form x% + 4y2 . Returning to
(4.1), we take n =5 and obtain
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4 4
(4.12) MB®) = 27 (ag; - agyp) +B° 20 (agy - 24543 -
j=0 j=0

It is clear that the complex conjugate of MB>) is AMB~°). We now put (compare [9,
formula (4.12)])

(4.13) -1)¥rB%) = x+ 2y8°

From (3.5) it follows that p = x% + 4y2 . Equating real and imaginary parts in (4.12)
and (4.13), we get

(- 1)fx

(-1)F 2y

(ag +ag+ag+ajp;+ag) -(a+ag+a;pg+ajys+ajg),

(a; +ag+ag+a;;+ a,4) - (azg+a,+a;, +a15+a19).
With the aid of (4.4) and (4.5), we can simplify the last two equations to
(-1)'x

(-1)f2y

- 1+28.0 - 4(a.2 - 3,4) - Zf,
(4.14)

I

2ag - 4(a3 - ay) - 2f.

We next show that ag = 1 (mod 2), whence x = 1 (mod 4). The value of x in
(4.13) is thereby precisely determined by the equation

(4.15) p = %% + 4y with x = 1 (mod 4).
To prove that ag is odd, we employ Lemma 5 with E = 10. Using (4.5), we obtain
(4.16) ®;,(0) = (-1)'10(-1 + 2a, - 2f).

Hence it suffices to show that @10(0) = 10 (mod 40).
From (3.21), we get

(4.17) ©,5(0)=-p -1+ 204,
where A is the number of values of k (k= 1, 2, 2f + 1) for which x(910k + 1)
takes the value 1. If k = 2f + 1, then x(619K +1)—x(2)—( 1)f. For k=1, 2, ---, 2f,

group the integers k into pairs so that k and 2f + 1 - k form a pair. By (3.14) and
(3.17),

X(910k

+1) = x(p!0BHI-Ky (4 <k <2f).
Therefore A is even or odd according as f is odd or even. In either event, (4.17)
implies that ©;,(0) = 10 (mod 40). This proves the assertion that ay is odd.

It is instructive to compare the formulas for a b, c, d in (4.8) with the formulas
for x, y in (4.14). Suppose that a = 0. Then (- 1) X = —5(a2 - a4), so that 5 |
Conversely, suppose that 5 | x. In the proof of Lemma 7 it is shown that if a # 0
then b = 0. Hence (-1) 2y = -5(a3z - ay), sothat 5 l y. But § [ x together with
5 1 y implies 5 l p, an impossibility. We conclude that a = 0 if and only if 5 | X
The following improved formulation of Lemma 7 is an immediate consequence.
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LEMMA 8. Let p=20f+9=x*+4y>. If 5| x, then a=d =0 and p = b? + 5c2.
If5)x, then b=c=0 and p = a* + 5d°.

On the one hand, Lemma 8 expresses p in the form u? + 5v2 with u=a+ b and
u? = a% + b%. On the other hand, the lemma expresses a and b ambiguously in
terms of u. In fact, if p = u? + 5vZ, then 2 =0 and b=u when 5 | x, and a=u and
b =0 when 5 ,f x. We now show how to remove the ambiguity in the sign of u in case
5 ,}’ x. Comparing the formula for a in (4.8) with the formula for x in (4.14), we see
that a = (-1)fx (mod 5). In view of (4.15), the sign of x is determined by the condi-
tion x = 1 (mod 4). Consequently, if we henceforth put u = (-1)fa when 5 ,I’ x, then
the condition u = x (mod 5) with x = 1 (mod 4) will be satisfied.

nm

We now establish the following theorem.

THEOREM 2. Lef p = 20f + 9 = u? + 5v% = x% +4y%, with x = 1 (mod 4). If
5 [ x, let u be uniquely determined by u = x (mod 5). Then

p-1 0 (|x,
2 )((s(s4 - 5s% + 5)) =
s=0 4u  (5)]x%).

Proof. The sum in Theorem 2 is A5. By Lemma 1, 2A5 = Q5+ ©5. Since
p #1 (mod 5), the sum Q5 reduces to the Jacobsthal sum ¢(1) defined in (2.3). By
(3.20), ©5 = ©,4(0). Hence 2Ag = ¢(1) + @14 (0). We now show that

(4.17) #(1) = -2x, ©;,(0) = 2x+ (-1)'8a.

The first equation in (4.17) follows from Lemma 2. The second equation in (4.17) is
a consequence of (4.16). Using (4.8) and (4.14), we can easily verify that the right
member of (4.16) is equal to 2x + (-1)f8a. From (4.17) we obtain 2A5 = (-1)f8a.
In view of the discussion following the statement of Lemma 8, it is clear that a =0
if 5 l x and that a = (-1)fu if 5 f x. This proves Theorem 2.

The next theorem eliminates the ambiguity in the second congruence of (1.2).
THEOREM 3. Let p = 20f + 9 = u% + 5v2 = x% + 4y2. Then

10f+4Y (10f+4Y _ , 2
( ¢ )( = 4u” (mod p).

3f+1
Furthermore,

(10f+4> _ (10f+4 or _(10f+4)( dv)
f T\ 3f+1 "\ 3t+1 /) ‘moapl,
accovding as 5 ,|’ X or 5 [ X.

Proof. In the first place, it follows from (4.10) that

5F

In the second place, by Lemma 6,
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SA.:)—E- A3 = x(2) (13?_:14) (mod p),

x(2) (IOf: 4 ) (mod p).

7\11—!-?\7

In view of Lemma 8, u® = a® 4+ b?%. This implies the first part of Theorem 3. Again,
by Lemma 8, a=0 if 5 | x and b= 0 if 5 f x. This implies the second part of
Theorem 3.
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