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1. INTRODUCTION

The basic theorem of elementary calculus which states that a differentiable
function f whose derivative vanishes on an interval [a, b] must be constant on [a, b]
has been generalized in several ways. Thus, the hypothesis of differentiability has
been weakened (for example, to continuity or approximate continuity), the derivative
has been generalized (for example, to approximate derivative, or to a Dini deriva-
tive), and the vanishing of f' everywhere has been weakened (for example, to vanish-
ing except possibly on a denumerable set).

The authors of a recent series of interesting articles ({2], [6], [7], [8]) have con-
sidered the following question. Let € be a class of functions defined on [a, b]. A
set E C [a, b] is called a statiornary set for & provided every function in € that is
constant on E is constant on [a, b]. Problem: to determine the class of stationary
sets for . Now, if ¥ is the class of derivatives (or approximate derivatives or
Dini derivatives) of differentiable (or continuous or approximately continuous) func-
tions, then a determination of the class of stationary sets of ¢ yields as a by-
product a generalization of the basic theorem mentioned at the outset.

In this article we prove three theorems that generalize the basic theorem in the
manner described. One of these theorems deals with approximate derivatives, one
with Dini derivatives, and one with extreme bilateral derivatives. We weaken the
differentiability of f to the Darboux property, and our exceptional sets are taken to
be totally imperfect. We then interpret our results in terms of the language of sta-
tionary sets, and show (in two of the three cases) that our results are the best pos-
sible in the sense that the exceptional sets mus¢ be totally imperfect.

2. PRELIMINARIES

In this section we develop notation and terminology, and we state some of the
known results to which we shall refer.

Throughout this article, f denotes a finite function defined on a closed interval
Io = [a, b]. I A is a subset of I, then ~A denotes its complement (relative to Iy),
m*(A) its Lebesgue outer measure, and m(A) its Lebesgue measure (if A is Le-
besgue measurable). We also use the symbol A ~ B to denote a set-theoretic dif-
ference.

For each function f, we denote by DT f the upper Dini derivative on the right, by
f' the upper bilateral derivative, and by f;p the approximate derivative, provided
this approximate derivative exists, finite or infinite. By f(A) we shall mean
{y: y = f(a) for some a € A}. If for every interval I C I, the set f(I) is connected,
we say { has the Darboux propeviy or f is a Darboux function.
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For a development of the theory of approximate derivatives see Saks fol. An
elegant treatment of some of the properties of approximate derivatives can be found
in Goffman and Neugebauer [4]. The theorems proved in [4], however, pertain to
finite approximate derivatives, and are not valid for approximate derivatives, which
may be infinite. (See Zahorski [12].)

A word about totally imperfect sets is in order. A set is called totally imper-
fect if it contains no nonempty perfect subsets. Since a nonempty perfect set must
be nondenumerable, it follows that any denumerable set is totally imperfect. There
exist, however, nondenumerable totally imperfect sets. For a proof of the existence
of such sets see Goffman [3, p. 146]. Now, according to a result of Souslin (see
Sierpinski [10, p. 224]) every nondenumerable analytic set contains a nonempty per-
fect set. In particular, a nondenumerable Borel set cannot be totally imperfect. We
use this fact in the proofs of the theorems below to prove that our exceptional sets,
which by hypothesis are totally imperfect, are in fact denumerable. (Actually, of
course, the conclusions of our theorems guarantee that these exceptional sets are

empiy.)

3. MAIN RESULTS

We now proceed to the theorems mentioned in the Introduction. Actually, we
prove slightly more than was stated there. We assume in each case that the appro-
priate derivate of the Darboux function f is equal to a constant A, except possibly on
a totally imperfect set, and conclude that f is of the form f(x) = A x -+ constant on I;.
For A = 0, we have tlie theorems mentioned in the Introduction. Observe that the
case A # 0 does not follow from the case A = 0 as easily as one might expect, be-
cause it is not immediately clear that the function g given by g(x) = f(x) - Ax has the
Darboux property.

In the sequel we make free use of several theorems envolving such notions as
functions of generalized bounded variation, functions with generalized absolute con-
tinuity and functions that satisfy Lusin’s condition (N). The relevant definitions,
theorems, and notations may be found in Saks [9], particularly in Chapters VII and IX.

THEOREM 1. Let f be a Darboux function whose approximate devivalive fgp
exists, finite ov infinite, at each point of 1g. If fgp =X on a set E whose comple-
ment is totally impevfect, then { is of the form f(x) = Ax + constant.

Proof. Let H= {x: f4,(x) #A}. The set H is of type Gg, because f;,, being
an approximate derivative, is of Baire class at most 2 [12]. On the other hand,

H is a subset of ~E and is therefore totally imperfect. It follows that H is at most
denumerable. In particular, f, < =, except possibly on a denumerable set. Thus,
there exists a denumerable collection of sets A;, Ay, *** such that Io={JAx and

f € BV on each of the sets A, . In addition, f satisfies Lusin’s condition (N) on I;.
It is easy to verify that the sets A, may be taken to be measurable and pairwise
disjoint.

Let A be any one of the sets Ay. Let fa be an extension of { | A (the restric-
tion of f to A) to all of Iy such that f, is of bounded variation. Then fj =f, =2
on A, except for a set B C A with m(B) = 0. Since f satisfies Lusin’s condition (N},
m(f(B)) = 0. Furthermore,

mHEA ~ B) = mHCa (A ~ B) < ) |£4] = |2 m(a ~ B) = [x| m(a).
A~B
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The inequality in this chain is a consequence of the differentiability of £5o on the set
A ~ B. It follows that m*(f(A)) < |A| m(A). Recalling that A was taken to be any of
the sets A, , and that these sets are measurable and pairwise disjoint, we conclude
that

m(f(Ip)) < 22m*(£(A)) < | x| 22m(Ay) = || m(Tp).

Since we can apply this argument to any interval I C Iy, we obtain the inequality
m(f(I)) < ')\l m(I). Now, by hypothesis, f possesses the Darboux property, hence
f(I) is an interval (possibly degenerate). From this and the inequality

m(£(1)) < || m(3)

it follows readily that f satisfies a Lipschitz condition with constant |7t| In par-
ticular, f is absolutely continuous. Since f'= A a.e., we conclude that f is of the
form f(x) = Ax+ constant.

THEOREM 2. Let f be a Davboux-Baive function on Ig. If on a set E whose
complement in 1y is totally impevfect, at least one of the Dini devivatives equals
the constant A, thex f is of the form f(x) = Ax + constant.

Proof. Let H be the set of points at which none of the Dini derivatives equals A.
Then HC ~ E, hence H is totally imperfect. On the other hand, H is the intersection
of four sets: H=H" N Hy N H™ N H_, where for example, Ht is the set on which
Df # A, and where the sets H;, H™ and H_ are defined in an analogous manner with
respect to the other Dini derivatives. Since f is a Baire function, each of its Dini
derivatives is a Baire function [1]. It follows that each of the four sets is a Borel
set. Thus H is a Borel set, and since H is also totally imperfect, we conclude that
it is at most denumerable. From the inequality

mr(i(~HD) < | |Dte] = Al m(~E") < [2| m(1p)

~gt
and similar inequalities for the sets H s H™, and H_ we deduce that
m*(f(~H)) < 4 [A| m(1) .

Since f(H) is countable, m*(f(I5)) < 4 |A]| m(Iy). As in the proof of Theorem 1, we
conclude that f satisfies a Lipschitz condition and that f'= 2 a.e.. The theorem
now follows.

THEOREM 3. Let f satisfy the Davboux condition on an interval 1,. If on a set
E whose complement is totally impevfect atl least one of the extreme bilateval de-
vivatives is equal to the constant A, then f is of the form f(x) = Ax + constant.

Proof. According to a theorem of Hfjek [5], the extreme bilateral derivatives of
an arbitrary finite function are of Baire class at most 2.” We use this to show that
the set H' on which neither extreme bilateral derivative equals A is of type Ggg,
and we conclude, as before, that H' is at most denumerable. Now, the set H of the
previous theorem is contained in H'. The rest of the proof of this theorem parallels
the corresponding part of the proof of Theorem 2. We omit the details.

Remark. A theorem similar to Theorem 2 was stated by Sunyer I Balaguer [11].
In that article, however, the author assumed that f is continuous.
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4, STATIONARY SETS

The results of Section 3 may be interpreted in terms of the language of stationary
sets. Let .« denote the class of approximate derivatives, finite or infinite, of Dar-
boux functions; @ the class of upper right Dini derivatives of Darboux-Baire func-
tions; and % the class of upper derivatives of Darboux functions.

THEOREM 4. Let E be a subset of 19 whose complement in 1y is totally im-
pevfect. Then E is a stationary set for each of the classes «, @, and .

The proof of Theorem 4 is contained in Theorems 1, 2, and 3.

Now let E be any subset of I whose complement in I, contains a perfect set
P'. Let P be a null, nowhere dense, perfect subset of P'. Then there is a continuous,
nondecreasing function f that is constant on each interval contiguous to P, but not
constant on any interval containing points of P. It is clear that f' =0 on ~P and
therefore on E, but Dtf (and therefore f') is positive at all points of P except at
the left-hand end points of the intervals contiguous to P. Consequently, any set that
is stationary for & or for % must have a totally imperfect complement with re-
spect to Ij.

In conclusion we observe that if f is defined by
0 if a <x<xp,
f(x)= (1 if x=xg,
2 if xg <x< Db,

then f},(x) = DT f(x) = f'(x) = 0 if x # xg, but £1p(%0) = DV f(xq) = f'(xg) = .

This simple example shows that none of the theorems of Section 3 is valid with-
out the hypothesis that f be a Darboux function. In fact, it shows that the only sta-
tionary set for the class ' of approximate derivatives of arbitrary approximately
differentiable functions on [a, b] (infinite values allowed for fl ), or for the class
@' of Dini derivatives of arbitrary finite functions on [a, b], or for the class @' of
upper derivatives of arbitrary functions on [a, b], is the interval [a, b] itself.
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