NONLINEAR PERTURBATION OF A LINEAR SYSTEM
OF ORDINARY DIFFERENTIAL EQUATIONS

Nelson Onuchic

Given two systems of ordinary differential equations,

(1) x = A(t)x + f(t, x),

(2) x=A(t)y

and a fundamental matrix Y(t) for (2), we pose the following problems:

(i) If x(t) is a solution of (1), does there exist a constant n X 1 matrix b such
that

(3) x(t) = Y(t)[b+o0o(1)] as t —» ©?

(ii) If b is a constant n X 1 matrix, does there exist a solution x(t) of (1) such
that (3) holds?

In Theorem 1 we generalize the results of Z. Szmydt [11, Theorems 1 and 2],
and we give a positive answer to Problem (i). Theorem 1 is also a generalization
of a result of R. Bellman [2], who studied the case in which f(t, x) is linear.

A positive answer to Problem (ii) is given in Theorem 2. This theorem depends
on the Lemma stated below, which is a very special case of one of the author’s
earlier results [8, Theorem 1].

A special case of Theorems 1 and 2 is considered in the Corollary following
Theorem 2.

In Theorem 3 we give a generalization of a result of W. Trench [12]. See also
[1, Theorem 2], [5] and [9]. Our Theorem 3 is a positive answer to Problem (ii) for
the case in which second-order systems are considered. Trench deals with second-
order scalar equations under linear perturbations. We deal with second-order sys-
tems under perturbations not necessarily linear. The proof of Theorem 3 depends
on the Corollary mentioned above.

Results related to problems (i) and (ii) may be found in [3], [6], [7], and [10].
Other references can be found in the book by L. Cesari [4].

We denote by ||z = Z; |Zj| the norm of any n X 1 matrix z = col(zy, ---, z,)
and by ||Z]| = Z;; | Z}| the norm of any n X n matrix Z = (Zj). Our results are
dependent upon the foflowing hypothesis.

HYPOTHESIS H. For every positive constant M theve exisls a nonnegalive
Junction hy,(t) such that if Y is a fundamental matrix for (2), then
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[ce)
SO hy(Bdt < = and | YN O£, YOR)|| < hy(t)

Jor all (t, x) with t> 0, |x| <M.

In the sequel it is always supposed that f(t, x) is an n X 1 continuous matrix for
t > 0, that ||x|| < =, and that A(t) is an n X n continuous matrix for t > 0.

LEMMA. If Hypothesis H holds, with A(t) = 0 in (2), and b is a constant n X 1
matrvix, then theve exists a solution x(t) of kX = 1(t, x) for which

x(t) = b+o(l) ast — .

THEOREM 1. Suppose that Hypothesis H is satisfied. If ¢(t) is a solution of (1)
such that Y-1(t) ¢(t) is bounded as t — <, then theve exists a constant n X 1 matvix
b for which

¢(t) = Y(t)[b+o(1)] as t — .

Proof. If z(t) = Y-1(t)¢(i), then z(t) satisfies the equation

z2(t) = Y- MO, Y(t)z(D),

and there exists a positive constant M such that " z(t) H <M for all £t > 0. Thus
t 1
2) = 2t)+ | Y Ue)i(s, Y(s)x(s)) s,
to
and || Y~1(t) £(t, Y(t)z(t))] < hyy(t) for all t >t,. It follows that
S v~ Us) (s, Y(s)z(s))ds
to

is finite. Consequently,

o0

z(t)

i

2tg)+ | Y o) (s, Y(s)2(s))ds + St Y-1(s) (s, Y(s)z(s))ds

to
= b+ St Y'l(s)f(s, Y(s)z(s))ds,

and therefore z(t) = b+ o(1) as t — <. This implies that
o(t) = Y(t)z(t) = Y(t)[b+o(1)] as t — .

The proof of the theorem is complete.

THEOREM 2. If Hypothesis H is satisfied and b is a constant n X 1 wmalrvix,
then theve exists a solution ¢(t) of (1) such that
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o(t) = Y({t)[b+o(1)] as t — .
Proof. If we make the transformation x = Y(t)z in the system (1), then
(4) 5 = Y MY £(t, Y(t)z).

It follows from the Lemma, applied to the system (4), that there exists a solu-
tion yY(t) of (4) such that Y(t) = b+ o(1l) as t — «. Therefore ¢(t) = Y(t) Y(t) is a
solution of (1), and ¢(t) = Y(t){b + o(1)} as t — .

The proof of the theorem is complete.

COROLLARY. Suppose that theve exists a nonnegative function h(t) such that

[~ o]

‘}O h(t)dt < « and

Iyt £, Y(®)x)|| < n@w)||x||

Sor all (t, x) with t >0, ||x| < .

If ¢(t) is a solution of (1), then theve exists a constant n X 1 matrix b for which
o(t) = Y(t)[b+ o(1)] as t — . Conversely, if a constant n X1 matrvix b is given,
then theve exists a solution $(t) of (1) such that ¢(t) = Y(t)[b+ o(1)] as t — .

Proof. By using Gronwall’s Lemma [4; 3.2.i, p. 35] we can easily show that, for
every solution ¢(t) of (1), Y-1(t)¢(t) is bounded as t — <. Thus the corollary is an
immediate consequence of Theorems 1 and 2.

Finally, we consider the second-order systems
(5) ¥ = Al)x + £(t, %),
(6) ¥y = Ay,

where A(t) is a diagonal n X n matrix, that is, A(t) = diag(a;(t), ---, a,(t)).

Let gbjl, quz be linearly independent solutions of the second-order scalar equation

y; = aj(t)Yj G =1, - n).
Let

A = max {[¢j®}%, o5 T,

j:]_’-..,n

and suppose ||£(t, x)| < h(t)||x]|| for all (t, x) with t > 0, ||x]| < . Concerning the
systems (5) and (6), the following theorem holds.

o0
THEOREM 3. Suppose that 5‘0 h(f)A(t) dt < . If x(t) is a solution of (5), then
theve exist constants bjl, bjz‘ (j=1, ---, n) suck that

(7) x5(t) = ¢}(b) [b} + o)} + ¢5(t) [b] + o(1)],

%5(t) = $1(t) [b! + o(1)] + $5(t) [bF + o(1)]
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as t — «© (j=1, -+, n).

Conversely, if the constants bjl, bjz (j=1, -+, n) are given, theve exists a solu-
tion x(t) of (b) satisfying (7).

Proof. Without loss of generality we may assume that
1 ~ 2 . .
$;(0) = $7(0) = 1, $j(0) = ¢{(0) =0 (j=1, -, n).

For j =1, ---, n, let us define the 2n X 1 matrices z = col(z;, ---, z,,) and
u = col(uy, ---, uz,) by the relations

Z2j-1 = X, 725 = X,
uzj_1 = ¥j, uz; = ¥j-

Associated with the systems (5) and (6) are the systems

(5') z = B(t)z + g(t, z),
(6') 4 = B(t)u,
where

o 1
B(t) = dlag(B l(t)a e Bn(t))y BJ(t) = ( )’
aj(t) 0

g(t; Z) = col (O; f]_(t’ X); °*% 0, fn(tr X)) .
We shall show that we can apply the above corollary to the systems (5') and (6').
Then our theorem will be an immediate consequence of this fact. The matrix
U(t) = diag (U (t), ---, Uy(t)), where
1 2
o1 () #5(t)
Uj(t) = .1 .2 2
b; ) b (t)

is a fundamental matrix of (6'). Clearly,
_1()(g2j_1(t, U(t)z)) é (1) -¢j2<t)) ( 0 )
U; (t =
: g2;(t, Ut)z) (—J)}(t) 1)/ \gaj(t, Ut)z)

£2;(t, Ut)z) = §(t, ¢l ()21 + of ()22, =+, dn(t) Zon-1 + A 22n) .

and

An easy computation shows that
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lu-tw) e, u(v)z)

< Z s+ [E®I1 i@ ]+ [65@ [ In | 2]

i,j

< Zan[lel® + [63®* 10 [ 2] < 4n®m©r®) | 2]-
J .

can now apply the Corollary to the systems (5') and (6'), and our theorem is

proved.

The proof of Theorem 3 shows that there are some obvious extensions of the

theorem. For example, the conclusions of Theorem 3 hold if we deal with the
system

X = Alt)x+ £(t, x, X)

with [f(t, x, %)|| < h(t) (| x|+ [[%]]) and S: h(t)A(t) dt < =, where

1.

2.

3.

10.

ap) = max  {|ef|%, 6712, 712, [8§]%} .

j=1,-e,n
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