SOME REMARKS ON SET THEORY, IX.
COMBINATORIAL PROBLEMS IN MEASURE THEORY
AND SET THEORY

P. Erdos and A. Hajnal
To the memory of our friend and collaborator, J. Czipszer

1. INTRODUCTION

A well-known theorem of Ramsay [12; p. 264] states that if the k-tuples of an in-
finite set S are split into a finite number of classes, then there exists an infinite
subset of S all of whose k-tuples belong to the same class. (For k = 1, this is
trivial.)

Suppose that with each element x of an infinite set S there is associated a
measurable set F(x) in the interval [0, 1]. It is known that if the measure m(F(x))
of the sets F(x) are bounded away from zero, then some real number c is contained
in infinitely many sets F(x). For the sake of completeness, we prove this.

It clearly suffices to consider the case where S is the set of natural numbers.
For each t in S, let

oo o0
Go=UFmn) ana ac=()g,,
t=1

n=t

where m(F(n)) > u> 0 for n € S. Clearly, m(G¢) > u and Gy € G (t=1, 2, .-.)
(throughout the paper, the symbol C refers to inclusion in the broad sense). Thus,
by a classical theorem of Lebesgue, m(G) > u. Since each c¢ in G is contained in
infinitely many sets F(t), this completes the proof.

Now, in analogy to Ramsay’s theorem, one might consider the following prob-
lem. Suppose that, for some u > 0, there is associated with each k-tuple
X = {xl, .-, x;c + of elements of an infinite set S a measurable set F(X) of [0, 1]
such that m(F(X)) > u. Does there always exist an infinite subset S' of S such that
the sets F(X) corresponding to the k-tuples X of S' have a nonempty intersection?
We study this and related questions. In the course of our investigation we are led to
a surprising number of unsolved problems.

All of our results concern the case k = 2, but we shall state some problems for
k> 2 as well.

Instead of choosing a measurable subset of [0, 1] for every k-tuple of a set S,
we could choose an abstract set having certain properties. Interesting problems of
a new type then arise, which we discuss briefly in Section 4. There we investigate
some purely graph-theoretical questions, and in particular we give a simple con-
struction of graphs that contain no triangle and have arbitrarily high chromatic
numbers.
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2. NOTATION AND DEFINITIONS
We adopt the following notation: -

cardinal numbers: a, b, m, n;

ordinal numbers: «, 8, -, v, UL, **;
nonnegative integers: i, j, k, £, r, s, t;

real numbers in [0, 1]: ¢, u, v, uj, u,, *=*, 6;
abstract sets: S, X, Y;

the cardinal number of S: §;

elements of sets: x, y, *--;

the least cardinal number greater than n: nt.

The symbols [S]? and [S]<2 denote the classes of subsets of S that have car-
dinality a and less than a, respectively. If X and Y are disjoint sets, we write

[X,Y] = {(x,y)|]x€eX and y € Y}.

Let S be a set of power m, and let ¥ denote a function that associates a measur-
able subset of [0, 1] with each X € [S]X. For brevity, we shall say that F is a set-
function on S of type k. (The symbol F will always denote a set-function.) Suppose
0<u< 1. I, for each x € [S}k, m(F(X)) > u or m(F(X)) > u, we say that F is of
order at least u or of order greater than u, respectively.

Let Z be a subset of [S<. If

N Fx)+p,

XeZ

we say that Z possesses property & (with respect to F).

With specific reference to the problems mentioned in Section 1, we introduce the
following symbols.

(1) (m, k, u) = n  and (m, k, >u) = n

represent the respective statements: If S=m and if F is a set-function on S of
type k and of order at least u (of order greater than u), then S has a subset S', of
cardinality n, such that [S']X possesses property &. To say that a statement in-
volving the symbol => is false, we replace => by #-.

The symbolic statement
(2) (m, u) = (n}, ny)

means that if S = m and F is a set-function on S, of type 2 and of order at least u,
then there exist disjoint subsets S; and S, of S with cardinality n; and n,, re-
spectively, such that [S;, S,] possesses property ‘#. Instead of (m, 2, u) = n, we
often write that S contains a complete graph of power n that has property & (with
respect to F).
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The theorems in whose proofs we use the generalized continuum hypothesis are
marked by an asterisk: (*).

3. THE CASE m < R,
THEOREM 1. Suppose that 2 < r < w. Then (Ng, 2, u) = r + 1 if and only if
u>1-1/r.

Proof. First we show the condition that u> 1 - 1/r to be necessary. If
0 € (0, 1), let

(3) o= 1L (0<s <1

be its r-ary expansion with infinitely many positive coefficients s;. Let S be the
set of positive integers. The desired set-function F of type 2 on S is defined as
follows. If 1 <t;=# t; <w, then

(4) 0 € F({t,, t,}) if and only if Se, # St,
in the r-ary expansion (3) of 4.
Clearly,
1
m(F({tly tZ}) =1 - 'i."

and thus F is of order no less than 1 - 1/r. On the other hand, S does not contain a
complete graph of power r + 1 that has property #. For if S' = {t;, =+, t.,;} and
[S']12 possesses property £, then there exists a 6 € (0, 1) such that

o (1 Fde, uh.

ti,tjGS'; i#]

Therefore, by (4), the numbers Sgys =, 8¢, are all different, which contradicts
r
(3). This establishes the necessity of our condition.

We complete the proof of the theorem by proving not only the sufficiency of our
condition but a stronger result as well; namely, we prove that corresponding to each
u> 1 - 1/r, there exists an integer k, such that

(ky, 2, u) =>r+1.

Indeed, let k denote a positive integer, let S = {0, 1, ---, k - 1}, and let F be a set-
function on S, of type 2 and of order not less than u.

There is no loss of generality in supposing that m(F(X)) = u for each X € [S]?.
For if m(F(X)) were greater than u for some of the X, we could replace each of the
sets F(X) by a subset Fi(X), of measure u. Clearly, a subset of [S]% having
property '& relative to ¥; would also have property & relative to F.
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Suppose now that every point ¢ of (0, 1) lies in fewer than u (12{) of the sets
F(X). Then

> mFEX) < ul¥),
Xe[s]zm( ( u(2)

contrary to the hypothesis that F has order at least u. Hence some c lies in at

least u (1;) of the sets F(X). That is, the graph induced by some c has at least

u (l;) edges, and of course the number h of its vertices is at most k. A special
case of a theorem of P. Turan [14; p. 26] asserts that a graph with h vertices and
more than -;—(l +€ -1 /r)h‘2 edges contains a complete (r + 1)-gon. It follows that

the graph induced by c¢ contains a complete (r + 1)-gon. This completes the proof
of Theorem 1.

Let S be the set of natural numbers, and let F be a set-function on S, of type 2
and of order at least u. For each subset S' of S, we write

nsy= (1 Fx.
X €[s']?

The “if” part of Theorem 1 asserts that if u> 1 - 1/r, then some set S' of r + 1
natural numbers has property £, that is, satisfies the condition II(S') # 8. The
question now arises as to what can be said about the measure of II(S'). We prove
the following assertion, which provides a sharpening, for the special case r = 2, of
Theorem 1.

THEOREM 1(A). Let S be the set of natural numbers, and let F be a sel-
Junction on S, of type 2 and of ovder at least u (u> 1/2). Then, for every € > 0,
theve exists a set S' of thrvee natural numbers such that m(II(S")) > u(2u - 1) - €.

This result is best possible for some special values of v, in the Jollowing sense:
Ifu=1-1/k (k= 3, 4, ---), then there exist set-functions F on._S, of order u and
of type 2, such that m(II(X)) < u(2u - 1) for every X C S with X = 3.

Remavrks. It is obvious that Theorem 1(A) is a generalization of the special case
r = 2 of Theorem 1. We do not know whether the positive part of this result is best
possible for other values of u. As to the cases r > 2, we conjecture that if

u> 1 - 1/r, then there exists a subset S'c S with S' = r + 1 for which
m(I(S") > u(2u - 1)(3u - 2) =~ (ru-(r -1)) -¢.

Here we also know that the result, if true, is best possible for certain special values
of u.

Before proving Theorem 1(A), we state some well-known results that we shall
often use in the sequel (see [5] and [9]).

(5) To each € > 0 and each positive mt er r, theve covrvesponds an integer
so(s r) with the following property. If Ak (1 g k < sqofle, r)) is a family of
measurable subsets of [0, 1] and if m(Ax) > u> 0 for all k, then theve exist r
integers ky <k, < --- < k. < sqle, r) such that
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r
m nAki)> ut -¢.
i=1

The following is an easy corollary.

(6) Let {Ay} (1 <k <) be asequence of measurable subsets of [0, 1], let
m(A) > u> 0, and let € > 0. Then, corrvesponding to each positive integer T, there
exists an increasing sequence {hj} of integevs such that

r
m n Aki) > uf -¢
i=1

for every set {kl} (1< i< r) taken from {hj}.

Now we outline the proof of Theorem 1(A). Let S be the set of natural numbers,
let F be a set-function on S satisfying the requirements of Theorem 1(A), and let
€ > 0. Without loss of generality, we may assume that m(¥(X)) = u for each
X € [S]2. .

First we define a partition
[S]1°=J,UJ,UJd; U,
as follows. For each X = {t;, t,, t3} (t; <t, < t3) we put
F1(X) = F({ty, tz}) N F({t,, t3}),

F({t,, t;}) N F({t,, t;}),

F,(X)

and we write

X € J; if m(F (X)) > u?-¢&/2 and m(F,(X)) > u? - £/2,
X € J, if m(F{(X))> u®-&/2 and m(F,(X)) <u®-¢/2,
@ X € J; if m(F,(X)) < u?-&/2 and m(F,(X)) > u? - ¢/2,
X € J, if m(F (X)) <u”-&/2 and m(F,(X)) <u?-e/2.

If S;C S and S, = Ng, then S, contains triplets X; and X, such that
m(F, (X;)) > u - g/2 and m(F,(X,)) > u? -¢/2.

This is so because by (5) (with r = 2) the set S; contains no infinite subset all of
whose triplets belong to the classes J; (i = 2, 3, 4).

From Ramsay’s theorem (see the beginning of the Introduction) it follows that all
triplets of some infinite subset of S belong to J,. Let S'= {tl, t,, t3} (t; <t <t3)
be any triplet in J;. Then, by the assumption that m(F({t b tz})) = u and by the first
line of (7),

m(Ii(S")) > uz—%— [u- (uz- )] =u2u-1)-¢.

o[ ¢
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This completes the proof of the first part of Theorem 1(A).

Now we prove the “best possible” part of Theorem 1(A). Let S be the set of
natural numbers, and for any k > 3, consider the k-ary expansion (3) (with k in
place of r) of an arbitrary 6 € [0, 1]. Using again the idea of (4), we define
F({t;, t,}) (for 1 < t; # t; < w) by the rule

(8) 6 € F({t1, t2}) if and only if St # St, -

Clearly, m(F({t;, t})) =u=1 - 1/k. On the other hand, suppose that X € [S]3,
X ={t}, tp, t3} (t; <t, <t3). From well-known properties of the expansion (3)
and from (8) it follows that

k(k - 1) (k - 2) _

m(I(%) = ),

1-1/k)(@1 - 2/k) = u(2u - 1).

This completes the proof of Theorem 1(A).
THEOREM 1(B).

<N0,2,>1—%)#r+1 2<r<ow.

We only outline the proof. First we establish the following result.

(9) Let S be the set of natural numbers. Corresponding to each pair t;, t,
1<ty #t, < w) and each € > 0, one can define a set function F{tlstz} on S, of

type 2 and satisfying the following conditions:
() I(Z) = B for every Z e [s]™",

(b) m(F{tl,tz}(X)) =1 _11: for every X € [S]? except X = {t;, t2},
(c) m(F{tl,tz}({tl’ tZ})) > 1-¢,

This can be proved, by a slight modification of the construction used in the proof
of Theorem 1, as follows.

Let ¢ be an integer, put k = £r, and for any 6 € [0, 1], let
N T
=2 — (0<7<k.
t=1K
For t€S and i=0, ---, r - 1, we now define a set S;; as follows. If t+ t; and

t # t, then S¢ ; is the set of natural numbers s satisfying the condition
i< s< €@+ 1); for the other cases,

Stl 0 = {0’ 1’ Y (Q- - 1)1‘} »

It
[ury
L]

L]

-

=
I
-t

Stl‘ ={(@ - Dr + i} for i
,1

={i} for i

i
L
"
I
0o

t2.i
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Stz,r-l ={r -1, er-1}.

Now we define F({t, t'}) for 1 < t# t'< w by the stipulation that 6 € F({t, t'})
if and only if sy and sy belong to sets S¢ ; and Sy ;v with i# i’

F clearly satisfies the requirements (a) and (b) of (9).
On the other hand,

1 2 2
m(Fry, e, 1 ({1, t21) > S k-0 >1-7>1-¢
if ¢ is sufficiently large.

Now let {XJ} (j < w) be a well-ordering of type w of the set [S]%. It follows

from (9) that, corresponding to every j < w, there exists a set-function Fy_on S
J

that satisfies the following conditions:
(10) Fy (%) @31 279 for every X €[8]%;

the set I1(Z) (defined with respect to FXj) is empty for every Z € [S]*T1;

m(Fy (X)) = (1 - -;l-‘ ) g-i-1 for every X € [X]2 except Xj;
J
-j-1
m(FXj(Xj)) > (1-¢)2 .
Next we define the set-function ¥ on S, of type 2, by the condition

(11) F(X) = U Fy (X) for every X € [S]%.
i<w J

We easily see from (10) and (11) that I(Z) = § for every X € [S]**!, and that

~1-1, (2 )-j-l 1
m(F(Xj))—l'r+(r'8 2 >1—r

if £ < % Hence F is of order greater than 1 - %, and this proves Theorem 1(B).

The idea of the proof is partly due to J. Czipszer.

Let mj = m(F(Xj)) - (1 - %;) for j < w, and write m = E?:O m;. In the case of

the example just constructed, m > 1/r - €. We do not know how far this inequality
can be improved; we only have some special results which show that if m is suffi-
ciently large for a set-function F on S, of type 2 and of order greater than 1 - 1/r,
then there always exists a complete (r + 1)-gon with the property . We omit the
proof of this, and we only mention that questions of this type lead to interesting
problems in measure theory.

THEOREM 2. If u is positive, then (R, u) => (r, R,) for each nonnegative
integey r.

Proof. We are given a set S with cardinality Ng. Without loss of generality we
suppose that S = {tT

t<w}. Let F be a set-function on S, of type 2 and of order at
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least u. We shall prove that, in fact, to each r and u (u> 0), there corresponds an
integer s = s(u, r) with the following property. Amongst any s integers ti, ---, tg,

there exist r integers til’ seey, tir such that an infinite subset S' of S exists for

which [{til’ -+, t; }, '] possesses property #.
r

If s is a positive integer, we let Z = {tl, e, ts}, and for some t not in Z, we
consider the sets F({ti, t}) (1 <i<s). Let 6 be a positive number less than u”.
It follows from (5) that if s is sufficiently large, say s> sy(u” - 9, r), then there

exist r vertices til’ .-+, t. among the t; for which
Ir

m=m{ [l F{,, t}>) > 5.
j=1 !

Since there are infinitely many t ¢ Z but only (i) possible choices of indices

iy, *--, i, some set of indices, say {il, .-+, i}, corresponds to infinitely many t.
Denote this set of t’s by S". Then S" is a subset of S of power R,.

Let
E =) r{t;;, t})  (tes”.
j=1

Since m(E;) > 6, the theorem proved in the Introduction guarantees the existence of
a denumerable subset S' such that

ﬂ E;+#0.

tes!
But this means that [{til’ .--, t; }, S'] has property #. This proves Theorem 2.
Ir
The question may now be asked: if u is positive, is the statement

(Rg, w) = (R, R,

0’
true? We were not, in general, able to answer this question, which is one of the
most interesting unsolved problems of our paper. We describe a simple example
by means of which J. Czipszer showed that the answer is negative if u< 1/2. Let S
be the set of natural numbers, and let 2 < r < w. Czipszer defined a set-function
F: of type 2 on S as follows. If (t;, t;) is any pair with 1 < t; <t, < w, and if
{st} denotes the sequence of digits in the nonterminating r-ary expansion of a
number @ in (0, 1], then

(12) 0 € FX({t,, t,}) if and only if Sg, > 8¢ -
1

Clearly, m(Fi(X)) = % (1 -7 ); hence F% is of order at least %— (1 - %) . Since

(1 - —:—_) — %, we only need to show that if S', S" are disjoint infinite subsets’ of

, then [S', S"] does not possess property & with respect to Fy for 2<r < w. In

W N =
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fact, if S' and S" are disjoint infinite subsets of S, then there exists an infinite in-
creasing sequence {t,} of natural numbers such that ty € S' if k is odd and

t, € 8" if k is even, and [S', S"] does not possess property & with respect to F¥
since the set of edges {ti, ti+1} (1 € i < k) also fails to possess property & for
k> r.

Czipszer’s example leads to some interesting new questions. First we need
some definitions.

Let S be the set of natural numbers, let T, = {tl, oo tr+1} be a sequence of
r + 1 natural numbers, and let T, = {tl, eeey thy ..« } be an infinite sequence of dif-
ferent natural numbers. Put

T = ittt} <i<n), I, = {{t;, tin}} 1<i<o).

Further, let F be a set-function defined on S, of type 2 and of order at least u. We
briefly say that S contains a path J,.;; of length r + 1 (with property #) or an in-
finite path J,, (with property &) if there exists a T, or a T, such that the corre-
sponding sets Jyi} or J, possess property & (with respect to F), respectively. If
in addition the sequences T, or T, are increasing, we say that S contains an in-
creasing path of length r + 1 or an increasing infinite path, respectively. We do not
know under what conditions on u the set S contains an infinite path. Perhaps this is
the simplest unsolved problem in our paper.

Now Czipszer’s set-functions F¥ show that for u < 1/2 the set S need not con-
tain an infinite increasing path, and more generally, that with respect to a set-
function of type 2 and order at least % (1 - % ) , S need not contain an increasing
path of length r + 1. The question arises whether this is best possible in u. It may

be true that if u> 1/2 then there exists an infinite increasing path, or that if

u> % ( 1- %) then there exists an increasing path of length r + 1, respectively. We

can prove this only for r = 2.

The character of a problem concerning increasing paths is somewhat different
from that of the problems treated so far in our paper; for the problem is meaning-
ful only if the basic set S is an ordered set, and the answer depends not only on the
power of S, but also on its order type.

Now we give our result concerning the case r = 2.

THEOREM 3. Letl S be the set of natural numbers, and let F be a sel-function
defined on S, of type 2 and of ovder at least u. If u> 1/4, then theve exists an in-
creasing path 13 with property &. For u < 1/4, this is not necessarily trvue.

We do not know what happens in case F is merely required to be of order
greater than 1/4.

Proof. The negative part of our theorem is shown by the set-function F’z de-
fined in (12). Consider now a set-function satisfying the requirements of Theorem 3.

For t=1, 2, ---, define

(13) E, = U rFdt,t}) and m, = mE),
t<t'<w
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and let 0 <& <u - 1/4. There exists a real number m and an infinite subset
S' ¢ S such that |m - m,|<&/2 for t € S'.

By (5) and (13); there exist t; and t; (1 <t; <t < w, t, tp € S') such that

m(Ey N Eg) > nf - /2.

Now F({t), t,}) C Etl, and m+ £/2<m?-¢/2+u, since E<u-1/4<m® - m+u.

Hence

m(F({t;, t,}) N EtZ) > 0,

and therefore

F({t;, t,}) N E, #0.

Thus, by (13),
F({t;, t,}) N F({t,, t;}) # 0 for some t,;>t,.

By the definition of a path with property &, this completes the proof of Theorem 3.

Theorem 3 implies immediately that each infinite subset S' of S contains an in-
creasing path J;. Now there are two kinds of nonincreasing paths J3: either
t, <t,, t3, orelse t, > t;, t3. It follows from (5) that each infinite subset S' of S
contains nonincreasing paths Jsz of both kinds, for each u> 0, and that each infinite
subset S' of S contains two elements X, Y € [S]%, with X = {t;, t,}, Y = {t3, t4},
and X n Y = 0, such that F(X) N F(Y) # 0 for each prescribed ordering of
t;, ty, t3, t4- With a partition of [SP and [S]4 similar to the partition we used in
the proof of Theorem 1(A), we can (by applying Ramsay’s theorem) prove the fol-
lowing result.

THEOREM 4. Let S be the sel of natural numbers, and let F be a set-function
on S, of type 2 and of ovder at least u with uw> 1/4. Then there exists an infinite
subset S' of S such that F(X) N F(Y) # § for every pair X, Y € [S|>. The condition
u> 1/4 is necessary.

We omit the proof.

Here we may ask the following question. Let S again be the set of natural num-
bers, and let a system Z < [S]2 of edges be called independent if X N Y = @ for
every pair X# Y (X, Y € Z). Is it true that if F is a set-function on S, of type 2
and of order at least u (u> 0), then S contains an infinite subset S' such that each
independent system Z c [S']? possesses property #°?

We know that there always exists an infinite subset S' satisfying the weaker
condition that every independent system Z C [S]2 of edges possesses property &
provided Z < 3. This can be shown similarly to Theorem 4.
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4. THE ABSTRACT CASE

In this section, S always denotes the set of natural numbers.

We say that F is an abstract set-function of type 2, provided F associates with
each X € [S]? a subset F(X) of a fixed set H, and that F possesses property (k)
if

k
Nrx)=p

i=1

for every sequence {X;} (1< i< k) in [S]%.

A set-function F of type 2 and of order at least u (u > 1 - 1/k) obviously is an
abstract set-function with property (k). The following result shows that in the
positive theorems proved in Section 3, the assumption that F is of order at least u
(u> 1 - 1/k) can not be replaced by the corresponding assumption that F possesses
property (k). However, some weaker results hold. We state two of them without
proof.

THEOREM 5. (a) Suppose that F is an abstract set function with property 4 (k)
Jfor some k (3 < k< w). Then there exists an infinite subset S' of S such that each
nonincreasing path Iz C [S'1? has property P.

(b) There exists an abstract set-function F, possessing property A(3), such
that no increasing path I3 of S has property # with respect to F.

We shall now describe some graph-theoretic constructions suggested by these
considerations. Let ¥ be a graph, and let G denote the set of verticesof ¥. A
subset G' of G is said to be a free subset of 4 if no two vertices belonging to G'
are connected by an edge in ¢. The graph ¢ is said to have chrvomatic number n
provided n is the least cardinal number such that G is the sum of n free subsets.

A well-known result of Tutte [2] states that if n is an integer, then there exists
a finite graph % that contains no triangle and has chromatic number n. Several
other authors have constructed such graphs and have given estimates for the mini-
mal number of vertices of ¢ (see [4, p. 346] and [11]). In our next theorem, we
shall give a construction for such graphs that we believe to be simpler than the
previous ones; unfortunately, it does not give a very good estimate for the minimal
number of vertices of 4.

It is sufficient to construct a graph % that has chromatic number RO and con-
tains no triangle, since, by a theorem of N. G. de Bruijn and P. Erdos (see [1]), if
every finite subgraph of a graph ¥ is r-chromatic, then % is also r-chromatic.
(In place of this argument, we could also use Ramsay’s theorem.)

THEOREM 6. Let G =[8]% (S={1, 2, :--}), and let the graph ¢ with the set G
of vertices be defined by the rule that two distinct vertices X = { s 1» sz} and '
Y={t,t,} 1<s; <s,<w; 1<t <t,<w) are connected if and only if either
s, =ty or t, =sy. Then 4 conlains no triangle, and its chromatic number is N.

Proof, The first statement is trivial. Suppose that the second is false. Then
G =G; U - U Gy, where k is finite and Gj, ***, Gk are free sets in ¥. Consider-
ing that G = [S]%, we see from Ramsay’s theorem that there exists an S'c S

(S' = Xo > 3) such that [S']2 C Gj for some i (1 <i<Kk). Let ty, t;, t3 € S'. Then
X ={ty, t2}, Y={tp, t3} € Gj, and X and Y are connected in 9, contrary to the
assumption that G; is a free set. This completes the proof of Theorem 6.
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Generalizing Tutte’s theorem, P. Erdos and R. Rado proved 8, p. 445] that if n
is an infinite cardinal number, then there exists a graph ¥ that contains no triangle
and has chromatic number n. Moreover, the graph constructed by them has n ver-
tices. Their construction is not quite simple. Using the same idea as in the proof
of Theorem 6 and applying a generalization of Ramsay’s theorem, we can now give a
very simple proof for a part of this result. Namely, we can similarly construct a
graph ¢ that contains no triangle and has chromatic number n; but the set of ver-
tices of this graph is of power greater than n.

P. Erdds proved [3, p. 34-35] the following generalization of Tutte’s theorem.
If k and n are positive integers, then there exists a graph ¢, of chromatic number
at least n, that contains no circuit of length i for 3 < i <k.

One couid have believed that, in analogy with Tutte’s theorem, this theorem also
could be generalized for n > N,. Surprisingly, this is not so:

If a graph 9 contains no civcuit of length 4, then ils chromatic numbey is at
most N
0-

We shall publish the proof of this theorem in a forthcoming paper in which we
shall also try to determine what kinds of subgraphs a graph ¢ of chromatic number
greater than Ny must contain. A typical result: % must contain an infinite path

and an even graph [Sg, S;], where S, =r, §; = Nj.
On the other hand, we prove the following generalization of the theorem of Erdos
and Rado cited above.

THEOREM 7. Let k be a positive integer, and let n be an infinite cavdinal
number. Then there exists a graph G that has chrvomatic numbeyr at least n and
contains no civcuit of length 2i + 1 for 1 < i< k.

In our construction, the set of vertices of ¥ is of power greater than n. We do

not know whether there exist such graphs ¢ with G = n. (Added in proof: Recently,
we proved that such graphs exist for every n.)

We only outline the proof of Theorem 7. Let m be a cardinal number greater
than n, and let ¢ denote the initial number of m. To define ¥, we put Z = {v}
(v < ¢) and G = [Z]rt1) and for arbitrary different elements

X = {Vla ) Vk+]_} and Y = {“‘13 ) U'k.,_}_}
vy <o < by << ligy)
of G, we let X and Y be connected in ¢ if and only if either

vy

1]

Ky, V3 = Hp, ) Vil = Mg
or

Hz =Vys K3 =Vp, =% Hpyy = Vo
The fact that ¢ contains no circuit of length 2i + 1 for 1 < i<k is assured by a
simple and essentially finite combinatorial theorem, which we omit.
Suppose now that the chromatic number of ¢ is less than n. Then
G = Ua <y Gg, Where ¥ < n and where G, is a free subset of ¥ for every

a <yY. If m is chosen to be greater than
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22 (x symbols 2),

then, as a corollary of a generalization of Ramsay’s theorem that was proved by
P. Erdos and R. Rado (see [7, p. 567]), there exist a subset S' of S (S' =k + 2) and
an a < ¢ such that [S'kt] ¢ G,.

Let S'= {Vl, *ty Vil Vk-'—Z} (Vl < ... < Vk-'l-Z)' Then

X = {VI’ ) Vk+1}s Y= {VZ’ T Vk+2} € Ga:

and X, Y are connected in %. This contradicts the assumption that G, is free.

N
5. THE CASE m=N8; OR m=2 °

In this section we shall often refer to the partition symbol m — (b,)¢ introduced
by P. Erdss and R. Rado [6, p. 428]. For the convenience of the reader we restate
the definition. -

Let m and ¢ (c > 2) be cardinal numbers, let r be an integer (r > 1), let ¢ de-
note the initial number of c, and let (b,) (v < ¢) be a sequence of type ¢ of cardinal
numbers.

The implication m — (bV)i means that if S is a set of power m and (J,) (v < ¢)

is a partition of the set [S]" (that is, [S]* = UV<¢, J,), then there exist a subset S!
of S and a vy < ¢ such that S'= by, and [S']" c J,, . The expression m (by)e

means that the above statement is false.

Several resulis concerning the symbolic statement m — (bu)z are proved in [6]
and [7]. A forthcoming paper by P. Erdds, A. Hajnal, andR. Rado [5] will contain an
almost complete discussion of the symbol.

Note that the problem of proving that m — (by)z is a generalization of the prob-
lem settled by Ramsay’s theorem. Indeed, Ramsay’s theorem (see Section 1) as-
serts that if c¢ is finite, then 8y — (R, -+, Ry) (or, more precisely, that
Ry — (b)) provided c is finite and b, = ¥, for every v < ¢.)

Now we turn to our original problems. First we prove the following negative
result.

(*) THEOREM 8. If S is a set of power 2“0, then theve exists a set-function F
on S, of type 2 and of order at least 1, such that no Z; C [S]?> with cardinality

3
greater than Ny possesses property &#; that is, if m = 2 0, there need not exist a
gvaph that has at least Wy vertices and possesses propervty P.

Proof. Let {u,} (v < w;) and {X,} (v < w;) be well-orderings of type w,
of the sets [0, 1] and [S]?, respectively. For each v < w;, we define
F(x,) ={u,}  @w<u<w).

Since each F(X,) has a denumerable complement, m(¥(X,)) = 1 if » < w;, and thus
F is of order at least 1. On the other hand, the intersection of any W; of the sets
F(X,) is obviously empty. This completes the proof.
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N
A corollary of Theorem 8: if 0 <u< 1, then (2 0 2 u) # N; provided (¥) is
assumed. Without the generalized continuum hypothesis, we can prove only the fol-
lowing weaker result.

N
THEOREM 9. If u< 1/2, then (2 °, 2, u) - N,.

N .
Proof. Let S be a set of power 2 ©. By a result of Sierpifiski [13], there
exists a partition of [S]% such that the statements

[sf=3,0d,, J,NJ=p, Scs ad[sPcd; (=1,2)

r

imply that B < Njg. (In terms of the partition relations implied by m — (b,), this
N
means that 2 0 - (N4, &1)2.

Now we define

(0,1/2) if X € Jy
F(X) =
(1/2,1) if XeJ,.

This set-function obviously satisfies the requirement of our theorem.
If u> 1/2, the argument above is inconclusive. Now, the edges of a complete

graph of power 2 0 can presumably be split into ZRO disjoint classes in such a
way that each subset of S of power N; contains an edge from each class. This
theorem has never been proved, not even for three classes, without the help of the
generalized continuum hypothesis (*). A proof using (*) is given in [5]. If we could
prove the theorem for r classes (r > 2) without using (*), then by following our
proof of Theorem 9, we could clearly show that for each r < w,

(2“0, 2,1-1/r) » NR;.

On the other hand, it is easy to see without using (*) that (2“0, 2,>0) # 3. To
prove this, we let S be the interval [0, 1], and we let F({x, y}) be the open interval
(x,, y). Obviously,

m(F{x, y})) = |x-y|> o,

and no triangle has the property .

Trees whose longest paths have length at most 2 are unions of stars. It is well
known that every complete graph of power N; is a countable sum of trees, in fact,
a countable sum of trees that are unions of stars. Thus, if we assume the continuum
hypothesis, then we can construct an F(X) such that m(F(X)) > 0 and no graph con-
taining a path of length 3 has property . For the sake of completeness we remark
that if ¢ = N¥; and S is a set of power N;, we can construct by the above remark a
set-function on S, of positive order and type 2, so that no graph of power N; and
no path of length 3 has property .

Our only positive result in this section is the next theorem.
THEOREM 10. If u is positive and m > W, then (m, 2, u) => Ng.
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Remark. If u< 1/2, we know by Theorem 9 that this result is best possible if
m < ZRO. If we assume (*), then, by Theorem 8, Theorem 10 is best possible for
each u< m and each m < 2 0,

Proof. It is sufficient to prove that if u> 0, then (¥}, 2, u) = N,

Let S be a set of power N;; without loss of generality, we suppose that S = {a}
(@ < w;). Let F be a set-function on S, of type 2 and of order at least u. For
brevity, we write

F({ay, a,}) = Fal 0y = Faz,al :

Let XoY denote the symmetric difference X U Y - (X N Y) of the sets X and
Y. The following theorem is well known (see [10, p. 168]).

THEOREM c«. There exists a denumevable sequence {E_ } (s < w) of meas-
urable subsets of [0, 1] such that if E is a measurable subset of [0, 1], then cor-
responding to each € > 0 there exists an s < w jfor which m(EoEy) < €,

Applying Theorem &, we obtain the following result.
THEOREM B. There exist an oy < w; and a subset Sy, of S with cardinality
W, such that for each a and @' inS,,

m(FOlO,C!o o g,0 o) < €.

Suppose now that Si C ---'C S; and the elements o, -+, @) _; are already de-
fined for some k (0 < k < w) in such a way that S, has power N,;. Then, if we
apply Theorem o k + 1 times, we establish the following result.

THEOREM y. There exist an oy € Sy (¥ # a; if i< k) and a subset Sra1 € Sk
with cardinality N, such that for each i < k and for each o and a'in Sy,
-k-1
F F 2 .
m( a;a® ai,a') <eg

Thus by induction on k, o and Sy ;) are defined for every k < w. Now let

[>e}
SRR

For each k < w, it follows from Theorem 8 and Theorem 7 that

oo

Y - 25 g k-1,

m(Gk) > m(Fak >
t=k

3P

hence, if 0 < € < u/2, then
m(Gy) > u-¢g > u/2,

Finally, the theorem proved in the Introduction enables us to conclude that there
exists an infinite sequence {k_.} (r < w} such that
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o0
Na, 0.
r=0

Let 8'={ay } (r < w). Then S' has power N, and [S']? possesses property .
T

The proof of Theorem 10 is now complete.

6. THE CASE m = N,.

Throughout this and the next section we shall assume the generalized continuum
hypothesis (*).

(*) THEOREM 11. (¥,, 2,>0) = ¥,.

Proof. Let S be a set of power N, and let F be a set-function on S, of type 2
and of positive order. We split the edges of the complete graph S into countably
many classes J by stipulating that X € J,_ if and only if for each t < w and each
X € [8]?

-t-1

2 < m(F(X) < 27°

Since the order of F(X) is positive,

U ..

t<w

2
It follows from a theorem in [5] that ¥, — (N, ===, N, ---)No (see the definition

of m — (b,); in Section 5). Hence, at least one of the graphs J; contains a com-
plete graph of power Nl, that is, there exist a subset S' of S of power N, and a
to < w such that [S N2 c J, ty" Applymg Theorem 10, with S' playing the role of S,

we obtain the desired conclusion.

Theorem 11 is probably best possible. In fact, it seems likely that even if we
were to assume that the order of F is at least 1, we could not deduce the existence
of a complete subgraph of power N; that has property #£. This question is con-
nected with the following unsolved problem stated in [5].

Let S be a set of power N,. Does there exist a partition of the complete graph
S into disjoint sets J, (v < w;) such that no countable union of J,’s contains a
complete graph of power N ;; that is, such that if S' is a subset of S with cardi-
nality ™, then [S']2N J, # P for at least X, sets J,?

Probably such a decomposition exists, but we have been unable to consiruct one.
For the sake of the argument, assume that it exists. Let {u,} (v < wj) be a well-
ordering of type w; of the interval [0, 1], and define a set-function of type 2 on S
by the condition

F(X) = {uu} (v <u<w)) for X € [8]?

if and only if X € J,, for each v < w;. Obviously, F is of order at least 1. More-
over, if S' isa subset of power N; of S, then F assumes N; distinct values on
[S'T% hence, [S]? does not possess property P.
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7. THE CASE m > N,.

Under the assumption that m > R ,, the connection between our problems and
measure theory becomes tenuous, and the questions become purely set-theoretical.
In this section we shall make heavy use of [5].

(*) THEOREM 12. If m = Ry, and cf(a) > 1, then (m, 2,>0) = N,.
This theorem is a corollary of the following stronger proposition.

(*) THEOREM 12(A). If m = Ny .y, cf(@)> 1; and if to each X € [S]? there
corvesponds a nonempty subset of [0, 1], then there exists a subset S' of S with
cardinality Rq and such that [S']% possesses property P.

Proof. Let {u,} (v < w)) be a well-ordering of type wj of [0, 1]. We define a
partition of [S]2 into sets J, (v < wi) as follows. For each X € [S]% and each
v < wj, X is in J, if and only if v is the least ordinal number for which u, € F(X).

A theorem of [5] states that, under the hypotheses of Theorem 12 (A),
2
Ropr1 = (Rg) N;-

The next theorem implies that Theorem 12 (A) is best possible even if the com-
plement of each set F(X) consists of one element.

(*) THEOREM 13. If m = RB and if eithev B is of the first kind or B is of the
second kind and N _; 8) is not an inaccessible cardinal greater than N, then

(@) (Wg, 2, 1) /> Ngif ci(B)+0,
(b) for each u< 1, (Rg, 2, u) - NB if cf(B) =0.

Movreover, in case (a) the desived set-function F can be chosen so that the comple-
ment of each F(X) consists of exactly one element.

Proof. Let S be a set of power Ng, and consider the case (a). A theorem in [5]
implies that there exists a partition of'B [S]? into disjoint sets J, (v < w;) such that
if S'is a subset of S with cardinality Ng, and if » < w}, then [S']%2 N J,# 8. We let
{u,} (v <w;) be a well-ordering of [0, 1] of type w;, and for each v< w; and each
X € [S]¢ we define

F(X) = [0, 1] - {u,} if XeJ,.

Clearly, the function ¥ has the desired properties.

We now consider case (b). By virtue of Theorem 1, we may suppose that g8 > 0.
Doing so, we choose an increasing sequence { Bt} (t < w) of ordinal numbers less
than g and cofinal with 8, and for each t < w we choose a subset S, of S with car-
dinality N B, SO that the S; are disjoint and

s= U s,.

t<w

On the set S* = {S,} (t < w) there exists by Theorem 1 a set-function F*, of type 2
and of order at least u, such that if S*' is a subset of S* of power Ro, then [S* ]2
does not possess property & with respect to F*,



124 P. ERDOS and A. HAJNAL

For any {x, y} € [S]%, suppose that x € Stl and y € Stz’ and define F({x, y})

as follows:
F({X, Y}) = (O: 1) (t]_ = tz) ’

F{x, yD = Fx({S;, 8,,}) (&, #ty).

It is easy to verify that F has the desired properties. This completes the proof.

For the case where N c£(B) is inaccessible and greater than N, the problem
remains unsolved.

(*) THEOREM 14. If m = RB > N is a limit cardinal and if n < m, then
(m, 2,> 0) = n.

It is a theorem in [5] that

m — (n)il.

Both Theorem 12 and Theorem 14 follow from this. Moreover, just as in Theorem
12 (A), instead of assuming that F 2‘is of positive order, we can merely assume that
F(X) is nonempty for each X € [S]“. We omit the details.

The only cases we have not yet discussed are m = N where @ > 1 and

either cf(a) =0 or cf(a) = 1.
(*) THEOREM 15. If m = Ny ,1, @ > 0, cf(a) = 0, and u> 0, then

o +1>

(m, 2, u) = N,.

Proof. Let S be a set of power Ny+1. Without loss of generality suppose that
S = {V} (v < wg41). Let F be a set-function of S, of type 2 and of order at least
u. We shall use methods employed in [5].

By the ramification method used there, we know that there exists an increasing
sequence {v,} (u < wg) suchthatif p < p'< p" <wg,, then
(16) F({Vu; V},L'}) = F({V]J,: V‘L"})'
We shall write Fy = F({u“, V‘“_l}). Let .{at} (t < w) be an increasing sequence
of ordinal numbers less than &, cofinal with @ and such that oy > 2 and Nat is
regular. Since [0, 1] has only X, subsets, it follows that corresponding to each
t < w, there exist a p; and a set Z; of ordinal numbers

b (g, <pSwg ;a1 =0

such that Z; has power Rat, and F,u = Fut for each p in Z;. I t <w, then

m(Fut) > u > 0; therefore, we conclude from the theorem proved in the Introduction
that there exists an infinite subsequence {t;} (s < w) such that

ﬂ F + 0.
s <w I"'ts
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Let

z- U Zs, S‘={V‘u} (nez).

Clearly,

:-S—' = Z) Nat = xa 3
s< w s
and, by (16), [S']2 possesses property 4. This completes the proof of the theorem.

We note that under the hypotheses of Theorem 15, (m, 2, >0) # N,. This is
true because of a theorem in [5] which states that if cf(a) = 0, then

Ng+1 7 (Na)?&o .

That is, if S is a set of power N,,; (cf(a) = 0), then there exists a partition of
[S]2 into disjoint sets J, (t < w) such that if t< w, S'C S, and [$']4 c J,, then

S' < Ny -
For each X € [S]2 and each t < w, we define F(X) = (2 -t-1 9-Y jf X € J;. For this
F it is obvious that (m, 2, > 0) # Ngy.
(*) THEOREM 16. If m = N,,;, cf(@) = 1, and o > 1, then
(@) (m, 2, 1) A R,
() (m, 2,>0) =>n (n< NV,).

Note that, in harmony with our remarks in the discussion of the case m = W,
we do not know whether or not (m, 2, 1) » W, is true if the condition @ > 1 is
omitted.

Proof of Theorem 16. The conclusion (b) follows trivially from Theorem 14. To
prove (a), we refer to the following theorem in [5]. Let S be a set of power Ny ,;,
where cf(a)=1 and o > 1. Then theve exists a partition of [S]% into disjoint sets
J, (v <wy) such that if S' is a subset of S of power N, then

[s1°NnJ,+p

Jor N, sets J,,.

We now let {uy} (¥ < w)) be a well-ordering of type wj of the interval [0, 1],
and wezdefine a set-function F by the condition that for each v < w; and each
X € [s]4,

F(X) = {uu} (v<p<wy) if Xed,.

By analogy with the remark made after the proof of Theorem 11, it is easy to see
that F has the desired properties.
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8. THE CASE k> 2

We shall discuss this case only briefly. At present we cannot even settle the
following question: Is it true that for each u> 0

(R}, 3,u) =47

Let k, m, and n be integers. It is an old problem of P. Turan’s to determine
the smallest integer f(k, n, m) such that if

Ayt Af(k,n,m)

are Kk-tuples formed from a set S of m elements, then there always exist n ele-
ments of S such that each k-tuple of these n elements is an Aj;. As we stated
earlier, Turan determined £(2, n, m). For k> 2, the problem appears to be quite
difficult. It is easy to show that

. f(k, n, m)

m-— o0 m

exists. The results of Turdn [2] imply that

1 1 1
0<Ck,n<k_! and CZ =§(1—n_1);

but even the value of C3 4 is not known.
It is easy to deduce by the methods used to prove Theorem 1 that if u> k! Ck,n’
then
(NO, k, u) = n.

This is no longer true if u = k! Gy ..
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