THE ALGEBRA OF SEMIPERIODIC SEQUENCES
I. David Berg

A sequence z = {zn} of complex numbers is called periodic if there exists
positive m such that z_ ., =z, for all n. A sequence is called semiperiodic if it
is in the uniform closure of the space of periodic sequences.

In a recent article [2], A. Wilansky and the author discussed the Banach space Q
of semiperiodic sequences. There we mentioned that Q is not the space of almost-
periodic functions on the integers.

In the present article, we put the obvious Banach algebra structure on Q and
show that Q = C(w), where @ is the character group of RY, where RO denotes the
additive group of rationals mod 1 in the discrete topology. Hence, the theory of al-
most periodic functions on topological groups becomes available to us. The general
problem of Bohr compactifications of locally compact abelian groups has been dis-
cussed by H. Anzai and S. Kakutani in [1], in which paper it is proved that @ (there
called the universal monothetic Cantor group) can be obtained as a Bohr compactifi-
cation of the group of all integers.

In [2], A. Wilansky and the author showed that any matrix summing Q was
bounded in the usual matrix norm. Here, we give a Characterization of the matrices
summing Q in terms of sequences of measures on w.

We acknowledge with thanks the helpful suggestions of Professor Wilansky and of
Mr. G. Rayna of Lehigh University.

1. THE TOPOLOGICAL GROUP w

Let (7, p) denote the additive semi-group of positive integers 7 with the metric
p, where p is defined as follows:

p(x, y) =% if n! divides |x - y| and (n + 1)! does not, p(x, x) = 0.

Let w denote the completion of this metric space. It is easily verified that w is
a compact topological group with metric p and addition + inherited from 7, for
example, the identity 0 is the limit of the Cauchy sequence {n!}.

THEOREM 1. Let RO denote the additive group of vationals mod 1 in the dis-
crete topology. Then w is the charactev group of RO,

Proof. Let x = {xn} € w. Then for r € RO, we define a homomorphism of RO
into the circle group by

x(r) = lim exp 2wmx,r.

n —oo
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To see that every character of RC is of this form, we observe that such a character
X is determined by its value on the set

1
nl!

and that x(1/m!) may be chosen to be any one of

n=1,2, }

{exp 2171%111-!1|qm €[0,1, >, m! - 1] and q,, mod(m - 1)! = qm_l} .

We now note that for such a collection of q_, {qm} € w and

lim exp 2171an1 = exp 27iq, -
o0 m!

Hence we have generated all characters of Ry.

Finally, observing that for x1, x%¢ &,

{p(xl, xz)s %} < {x}(r) = x%(r) for all r € R® such that n!r =0 mod 1},

we see that the topology of w is indeed that of the character group of RO Q.E.D.

2. THE BANACH ALGEBRA Q
Define multiplication and involution in Q in the obvious pointwise manner. Then
Q is clearly a function algebra.
THEOREM 2. Q= C(w).
Proof. Any periodic sequence P = {pn} can be expressed uniquely as
P, = 22 ajexp 2mir;n (r;eR ).
j=1
Hence linear combinations of characters on w are dense in Q. Q.E.D.

We can now apply the entire theory of almost-periodic functions to Q. We are
not interested in pursuing this further here and will merely note a few salient facts:

If z=4{z,} € Q, the (Von Neumann) mean of Q is just the Cesiro mean given by
1 n
M(z) = lim = 20 oz
Hence if we order R®= {r  }, then for z € Q,

oo n
z= 2J exp i2ar [ lim % 2 z; eXp (-i27r mj)]
m=1

n —oo j:]_
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We now characterize the space of matrices summing Q.

THEOREM 3. Let A = (aj;) be a matrix of complex numbers. Let S be an w
disk, Define 11;(S) by

where convergence is in the norm l” z”| = (M(zz))

uilS) = 2 ayj.
jeESNT
Then A sums Q if and only if
1. A is bounded.
2. lim u;i(S) exists for each w disk S.

i —o0

Proof. Let A sum Q. We first note that A is bounded. For if x= {x,} € 1,

o0 o0
sup 27 Xp Zp = 20 |xn|
z €Q, Iz”=1 n=1 n=1

Hence, by uniform boundedness, the statement Tro1X,Z, exists for all z € Q im-
plies {xn} € 1. Hence, again by uniform boundedness,

o]
| < o => sup Elaij|<°°.

)
Sl.lp | Z:a.lJZJ
i j=1 i j=1

If S isan w disk, S N T is a set of integers such that the characteristic function

of S N 7 is a periodic sequence of 1’s and 0’s. Call this sequence x. Then
1;(S) = (Ax);. Hence

lim p;(8) = lim (Ax);.

1 —»00 i— o0

Conversely, let the above hypotheses be satisfied. We observe that any periodic
sequence is a finite sum of characteristic functions of w disks restricted to 7.
Hence by the second hypothesis, A sums every periodic sequence. But since A is
bounded, A sums Q.

REFERENCES

1. H. Anzai and S. Kakutani, Bohr compactifications of a locally compact Abelian
group, I and II, Proc. Imp. Acad. Tokyo, 19 (1943), 476-480 and 533-539.

2. 1. D. Berg and A. Wilansky, Periodic, almost-periodic, and semiperiodic
sequences, Michigan Math. J. 9 (1962), 363-368.

Lehigh University
and
Yale University






