IMAGES OF CONVEX DOMAINS UNDER CONVEX CONFORMAL MAPPINGS

Ch. Pommerenke

Let w = f(z) be a convex mapping of |z| < 1; that is, let f(z) map |z| < 1 conformally and one-to-one onto a convex domain. Study [1] has provided that f(z) maps every disk in |z| < 1 onto a convex domain.

A circle in $|z| \le 1$ that touches |z| = 1 is called an *oricycle*. Through each pair of points in |z| < 1 there pass exactly two oricycles.

THEOREM. A convex set C in |z| < 1 is mapped onto a convex set by every convex mapping of |z| < 1 if and only if, for each pair of points z_1 and z_2 in C, the arcs between z_1 and z_2 of the two oricycles through z_1 and z_2 also belong to C.

Proof. 1. Let C be a convex set in |z| < 1 that has the property just stated, and let z_1 and z_2 be two points in C. Let Z_1 and Z_2 be the two oricycles passing through both z_1 and z_2 . Let K_1 and K_2 be the closed interiors of Z_1 and Z_2 , and let $K = K_1 \cap K_2$. Then the boundary of K belongs to C, and therefore $K \subset C$.

Let K_1^* , K_2^* , K^* , and C^* be the images of K_1 , K_2 , K, and C. By Study's theorem, the sets K_1^* and K_2^* are convex; hence, the set $K^* = K_1^* \cap K_2^*$ is also convex. Since $K \subset C$, we have $K^* \subset C^*$; and because K^* is convex, the segment $[f(z_1), f(z_2)]$ also belongs to C^* . Therefore C^* is convex.

2. Let the image C* of C be convex for every convex mapping of |z| < 1. Let Z be an oricycle through the points z_1 and z_2 of C, and let Z touch the unit circle at z_0 . The function

$$W = \frac{Z_0 + Z}{Z_0 - Z}$$

maps |z| < 1 onto the half-plane $\Re w > 0$. Since the oricycle Z passes through z_0 , it is mapped onto a straight line Z*. Because C* is convex, the segment

$$[f(z_1), f(z_2)]$$

of Z^* belongs to C^* . Hence the arc of Z between z_1 and z_2 belongs to C.

I want to thank Professor Reade for calling my attention to this problem.

REFERENCE

1. E. Study, Vorlesungen über ausgewählte Gegenstände der Geometrie, II. Heft, Leipzig, 1913.

The University of Michigan

Received December 15, 1961.