IMAGES OF CONVEX DOMAINS UNDER CONVEX CONFORMAL MAPPINGS ## Ch. Pommerenke Let w = f(z) be a convex mapping of |z| < 1; that is, let f(z) map |z| < 1 conformally and one-to-one onto a convex domain. Study [1] has provided that f(z) maps every disk in |z| < 1 onto a convex domain. A circle in $|z| \le 1$ that touches |z| = 1 is called an *oricycle*. Through each pair of points in |z| < 1 there pass exactly two oricycles. THEOREM. A convex set C in |z| < 1 is mapped onto a convex set by every convex mapping of |z| < 1 if and only if, for each pair of points z_1 and z_2 in C, the arcs between z_1 and z_2 of the two oricycles through z_1 and z_2 also belong to C. *Proof.* 1. Let C be a convex set in |z| < 1 that has the property just stated, and let z_1 and z_2 be two points in C. Let Z_1 and Z_2 be the two oricycles passing through both z_1 and z_2 . Let K_1 and K_2 be the closed interiors of Z_1 and Z_2 , and let $K = K_1 \cap K_2$. Then the boundary of K belongs to C, and therefore $K \subset C$. Let K_1^* , K_2^* , K^* , and C^* be the images of K_1 , K_2 , K, and C. By Study's theorem, the sets K_1^* and K_2^* are convex; hence, the set $K^* = K_1^* \cap K_2^*$ is also convex. Since $K \subset C$, we have $K^* \subset C^*$; and because K^* is convex, the segment $[f(z_1), f(z_2)]$ also belongs to C^* . Therefore C^* is convex. 2. Let the image C* of C be convex for every convex mapping of |z| < 1. Let Z be an oricycle through the points z_1 and z_2 of C, and let Z touch the unit circle at z_0 . The function $$W = \frac{Z_0 + Z}{Z_0 - Z}$$ maps |z| < 1 onto the half-plane $\Re w > 0$. Since the oricycle Z passes through z_0 , it is mapped onto a straight line Z*. Because C* is convex, the segment $$[f(z_1), f(z_2)]$$ of Z^* belongs to C^* . Hence the arc of Z between z_1 and z_2 belongs to C. I want to thank Professor Reade for calling my attention to this problem. ## REFERENCE 1. E. Study, Vorlesungen über ausgewählte Gegenstände der Geometrie, II. Heft, Leipzig, 1913. The University of Michigan Received December 15, 1961.