BOUNDARY FUNCTIONS FOR FUNCTIONS DEFINED IN A DISK

F. Bagemihl and G. Piranian

1. INTRODUCTION

Let C and D denote respectively the unit circle |z|= 1 and the open unit disk
]z| < 1 in the complex plane. By an arc at { € C we mean a Jordan arc that lies in
D except for one end point at ¢. Let ¢(¢) and f(z) be real- or complex-valued func-
tions defined on C and D, respectively. (For real-valued functions, we admit +e«
and -« as values; for complex-valued functions, we admit « as a value. Instead of
the real or complex numbers, we could consider values in more general spaces, but
it is doubtful that such extensions would enhance the intrinsic value of our theorems.)
We shall say that ¢ is a boundary function for £, or that f has a boundary function
¢, provided that for each ¢ € C there exists an arc A({) at { such that

lim f(z) = ¢(8) .
z—{g, ZGA(C)

When we speak simply of a function f, no restrictions whatever (such as analytic-
ity or continuity, for example) are assumed, unless they are explicitly stated.

In Section 2, we consider the problem of how many different boundary functions ¢
a particular function f can have. Section 3 is concerned with the relation between
boundary functions and the Baire classification. In Section 4, finally, we pose a num-
ber of problems.

2. THE NUMBER OF BOUNDARY FUNCTIONS
POSSESSED BY A FUNCTION

If f is defined in D and if there exist two arcs A and A' at £ € C along which
f(z) tends to two distinct limits b and b', respectively, as z — {, we say that ¢ is
an ambiguous point of f. We shall make repeated use of the following fundamental
result (see [1, p. 382, Corollary 1]).

THEOREM A. No function defined in D has uncountably many ambiguous points
on C.

We apply this to obtain a theorem on unrestricted functions, and then give exam-
ples of various functions having fairly many boundary functions.

THEOREM 1. Every function f in D has at most 2 Mo boundary functions.

Proof. By Theorem A, f has at most N, ambiguous points. At each ambiguous

point, f has at most ZNO asymptotic values. Hence, f has at most (ZN")No = 2“"
boundary functions.
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COROLLARY 1. If 2N° = NB, o> B, and F is a class of Wy functions defined
in D, then theve exist at most Ny functions on C that arve boundary functions for
functions -in & .

Proof. Since each function f in & has at most Ny boundary functions, there
exist at most Ny - Ng = N, boundary functions for the functions in #.

The example v = §log (1 - z) shows that a bounded harmonic function can have
270 different boundary functions. On the other hand, if f is a normal meromorphic
function [5, p. 53] and b is an asymptotic value for f at ¢ € C, then [5, p. 53, Theo-
rem 2] f has the angular limit b at the point ¢. Therefore each normal mero-
morphic function in D has at most one boundary function. The following theorem
implies that this result can not be transferred to the class of holomorphic functions
of bounded characteristic.

THEOREM 2. There ex®sts &z holomorphic function that belongs to every Havdy
class Hy (0 < p < ) and has 27'° boundary functions.

Proof. Gehring [2, pp. 287-288] has constructed a holomorphic function f be-
longing to every Hardy class H, and having the asymptotic values 0 and » at z = 1.
If a, — 0 rapidly enough, then the function

g(z) = 2 ay, f(ze'/)
1
has all the required properties.

3. BOUNDARY FUNCTIONS AND THE BAIRE CLASSIFICATION

There exist 2N° Baire functions defined in D [3, p. 319, Theorem I], and by

Corollary 1 there exist only 2Ne boundary functions for this class. It would be in-
teresting to know if all these boundary functions are Baire functions.

CONJECTURE. If f is a function of Baive class B and has a boundavy function
b, then ¢ is a function of Baive class at most B + 2.

We do not know even whether the conjecture is true for the case g = 0; for a re-
sult related to the conjecture, see Theorem 8.

Every function ¢ defined on C is the boundary function for some function f de-
fined in D (for example, let £f(0) = 0 and f(reif) = r¢(eif) for r # 0). Consequently
not every boundary function is a Baire function. We can, however, make the follow-
ing assertion.

THEOREM 3. If the function f has a boundavy function ¢ that is a Baire func-
tion, then every boundarvy function for £ is a Baive function. If ¢ is of Baive class
o > 3, then every boundary function for f is of Baive class a.

Proof. Let ¢ be of class a, and suppose that ¢, is another boundary function
for f. By Theorem A, ¢, differs from ¢ at no more than countably many points, so
that the function ¢, is of Baire class B, where g < max(2, o) (see [3, p. 352, Theo-
rem VII]). By a similar argument, « < max(2, ). This completes the proof.

THEOREM 4. There exists a Baive function ¢ of class 2 such that, if ¢ is a
boundary function for the function £, then every boundary function for f is of Baive
class 2.
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Proof. There exists [3, pp. 368-369] a Baire function ¢ of class 2 that cannot be
transformed into a Baire function of class 1 or 0 by altering its values at not more
than countably many points. Suppose that ¢ is a boundary function for the function f{.
If ¢, is a boundary function for f, then, by Theorem A, ¢, can be obtained from ¢
by altering the values of ¢ at not more than countably many points. This implies
that ¢, is a Baire function of class at most 2, and, because of the nature of ¢ de-
scribed above, ¢, is of class at least 2.

THEOREM 5. Theve exists a bounded conlinuous function having boundary func-
tions of Baive classes 0, 1, and 2, respectively.

Proof. Let &, = eign, where {91, 0,, .-} is the set of rational numbers in the
interval [0, 27]; denote by {Dn} a set of mutually disjoint open disks in D, with the
property that Dy is tangent to C at {,. Let C, denote the boundary of Dj, and R,
the radius of D,, that terminates at £,,. Inside D,, define f by the formula

£(z) = dist (z, Cn)
~ dist (Z, Cn) + dist (Z, Rn) )

Outside the set UDn, let f(z) = 0. Since every point of C is accessible along a path
in D that meets none of the disks Dy, and since f(z) = 1 on each of the segments Ry,
the characteristic function of each subset of {Cn} is a boundary function for £, and
the assertion of the theorem follows immediately (see [3, p. 365]).

THEOREM 6. There exists a harmonic function having boundayry functions of
Baire classes 0, 1, and 2, vespeclively.

Pyroof. Let p denote the elliptic modular function defined and holomorphic in D,
and let

f(z) = Su(z).

Then f is harmonic in D.

If { € C is a cusp of the modular figure, and if A is an arc at ¢ lying in the in-
terior of a triangle of the modular figure, then, as z — { along A, u(z) tends to 0,
1, or = ; we call { a cusp of the first, second, or third kind, according as the limit
is 0, 1, or . If ¢ is of the first or second kind, then f(z) — 0 as z — ¢ along A.
If ¢ is of the third kind, we can choose an arc A at { such that f(z) is identically
equal to one of the two values +1 along A; also, we can choose an arc A' at £ such
that f(z)= 0 on A'. We note that the countable set of cusps of the third kind is
everywhere dense on C.

If £ € C is not a cusp of the modular figure, then there exists a sequence
{T,, T,, ---} of distinct triangles of the figure, with the properties that T,, has a
side in common with T,,; (n=1, 2, --*) and that T, — £ as n — «. Along the open
sides of Ty, n(z) is real, and hence f(z) = 0. If z' and z" are points on distinct
open sides of T, then, for every positive g, it is possible to join z' to z" by means
of an arc A, which, except for its end points, lies in T,, and on which |f(z)| <eg.
Hence 0 is an asymptotic value for f at £, and an argument analogous to that con-
cluding the proof of Theorem 5 is again applicable.

If f is defined in D and has a boundary function ¢, and if £ is a family of arcs
(lying in D except for one end point) such that each point ¢ on C is the end point of
precisely one of the arcs A({) in ., and such that £(z) — ¢({) as z — ¢ along A(¢),
we say that f and ¢ admit the family A of arcs.
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We call a function of Baire class 2 an konorary function of Baive class 2 if there
exists a function of Baire class 1 differing from it at the points of only a countable
set.

LEMMA 1. Let ¢ — ¢, where each ¢ has at most countably many discon-
tinuities. Then ¢ is at most an honorvary function of Baive class 2.

Proof. Denote by E; the set of discontinuities of ¢,. Then the set E = U E,
is at most countable and is therefore an Fg, so that M = C \E is a set of type Gg.
Each ¢, is continuous on M, and hence, if ¢* denotes the restriction of ¢ to M,. ¢*
is of Baire class at most 1 on M. According to [4, p. 309], ¢* can be extended to a
function y that is of Baire class at most 1 on C. Since y differs from ¢ only at
the points of an at most countable set E, we have the conclusion of our lemma.

LEMMA 2. Let ¢ be at most an honovary function of Baive class 2. Then
¢ = lim ¢, wherve each ¢n has at most a finite number of discontinuities, every one
of which is a jump.

Proof. The conclusion is obvious in case ¢ is of Baire class at most 1, so that
we may assume ¢ to be of Baire class 2. By hypothesis, ¢ = ¢ + x, where x =0
except at the points of an at most countable set E = {¢,, €,, -}, and ¢ = lim ¥n,
where each Y, is a continuous function. Define x5, to be zero except at the points
€1, *-*, €n, where xn is made to coincide with x, and write ¢n = Yn + Xn. Then ¢n
is continuous on C except at the points €1, '+, {n, where ¢n has jump discon-
tinuities, and evidently ¢, — ¢, so that the lemma is proved. (In case some func-
tional values are infinite, a slight, obvious modification of the foregoing argument
is required.)

THEOREM 7. If £ is continuous in D and has a boundary function ¢, and if f
and ¢ admit a family of mutually disjoint arcs, then ¢ is at most an honorary func-
tion of Baive class 2.

Proof. For n=1, 2, ---, let C, denote the circle |z| = n/(n + 1). Without loss
of generality, we may assume that f and ¢ admit a family of mutually disjoint arcs
{A(t)} each member of which meets each of the circles Cn. For each ¢ and each
n, let ¢ n) denote the last point of A(¢) on C,, as one proceeds along A(¢) towards
C; let denote the set of all points ¢ (n), Clearly the ordering of the set
S, = {¢(™} on the circle C, is the same as the cyclic ordering of the set {¢} on
the unit circle C. For all ¢ on C, we write ¢,(£) = £(¢(0),

The set of points of S, that are not two-sided limit points of S, is at most
countable [3, p. 177, Theorem I], and therefore ¢, has at most countably many points
of discontinuity. Since ¢, — ¢, the conclusion of our theorem follows from Lemma 1.

THEOREM 8. For ¢ lo be a boundary function for some continuous function, it
is sufficient that ¢ be at most an honovary function of Baive class 2,

Proof. According to Lemma 2, ¢ = lim ¢,, where each ¢, has at most a finite
number of discontinuities, every one of which is a jump.

Let {¢ i} denote the set of points on C at which ¢, is discontinuous; for
n=2,3, -, define {{,x} to be the union of the set {t,,k_1} with the set of points
on C at which ¢, is discontinuous. For each n, we suppose that the indices k are
chosen in accordance with the anticlockwise cyclic ordering of the set {¢nx} on C;
and if the set {¢,k} contains exactly h points, we shall write {n h+1 = {nl.

Let {D 1x} denote a set of circular disks in D, tangent to C at the points of the
set {€1x}. We suppose that the disks have a common radius p,, and that p, is so
small that no two of the disks have a common boundary point. When the set of disks
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{Dn_l’k} has been defined, we choose the disks D, with radius p, (0n< Pn-/2)
tangent to C at the points {nik, except that if {ni = {n_1,h, then Dy shall be identi-
cal with Dy _1,h At each stage, the radius p, is chosen so small that no two of the
disks Dk have a common boundary point.

Let Cy denote the circle |z| =1- p,/2. Let C,i denote the open arc from {nx
to &y x4+1 (in the anticlockwise direction), and let C%, denote the corresponding arc
of C} which lies between Dy and f)n’k_i.]_. For each n, let g,)x denote a direction-
preserving homeomorphism from Chy to Cpp.

We are now ready to construct a continuous function f whose boundary function
is ¢. On C},, we define our function by the rule

f(z) = ¢ n(gnk(2)) .

On the radius of Dk which terminates at ), we use the definition

f(z) = ¢‘(an) .

There is no difficulty now in extending f continuously to the whole of D in such a
manner that ¢ is a boundary function for f.

We consider next those functions defined on C that are both characteristic func-
tions of a point set and boundary functions for a continuous function.

THEOREM 9. In ovder that the characteristic function of a set E on C be the
boundary function for some continuous function, it is necessary and sufficient that
both E and C~E be the union of a countable set and a set of type Gg.

Necessity. Suppose that the characteristic function ¢ of E (E C C) is a boundary
function for a continuous function f. Let M, and M, denote the sets in D where the
real part of f lies in the intervals (-1/4, 1/4) and (3/4, 5/4), respectively. The
boundary of each component Mg; of M, meets C in a closed set. The set of points
on C that are not boundary points of some component Mg; is therefore a set of type
Gs.

It follows that the set of points £ on C for which ¢(£) = 1 is the union of a set of
type G and a set of points on C that are simultaneously end points of arcs in M,
and end points of arcs in M,; and by means of Theorem A, it can easily be shown that
the latter set is at most countable. A similar argument shows that the set of points
where ¢(¢) = 0 has the same structure, and the necessity of the condition is thus
established.

Sufficiency. Suppose that C is the union of the disjoint sets E,, E,, and E,,
with E, and E, of type Gg, and E, finite or countable.

We draw a set of open disks D; internally tangent to the unit circle C at the
points & of E,, in such a way that DiN Dj is empty for i # j. At each point ¢&; of
E,, we draw two rectilinear segments Ljo and Ljj; that lie in D; except for their
common end point &j.

Let B denote the set D UDi, and let w(z) be a function defined on B in such
a way that

(i) w(eie) = eie,

(i) |w@)|= |z,
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(iii) w is continuous on B and univalent in the interior of B,

(iv) the image of B under w is the closed disk |w| < 1, and the image of the
boundary of D; lies on the radius terminating in the point w = ;.

In other words, let the mapping w “close the holes” that the removal of the disks D;
leaves in D.

We shall first define a function g, continuous in the disk |w| < 1, which has the
radial limits O and 1, respectively, at each point of w(E;) and w(E,).

Since the set E, is of type Gg, its image under w has the form

W(Eo) = nGJ (GJD Gj+1’ GJ open).

For each j, we divide each component of Gj into the union of adjacent closed (circu-
lar) intervals Ijp in such a way that the set of limit points of the points of division
consists of the two end points of the component. For each of the closed intervals thus
constructed, we refer to the two intervals adjacent to it as the neighboring intervals.
We then apply a similar construction to the set w(E,), obtaining closed intervals Jjp>
and we order all the closed intervals I jp and J jp obtained in the two constructions
into a simple sequence {I;} of intervals on C (if some interval occurs s times in
{Ljp} and t times in {ijk}, it shall occur s + t times in {Iy}).

For k=1, 2, ---, we denote by Cx the circle |W| =1 - 2K, On the arc I’l"< of Cy
whose projection from the origin is the interval I, on C, we define g(w) to have the
value 0 or 1, according as the interval Ix arose from the set w(E,) or the set
w(E)).

On each radius of the disk [wl < 1, we define the function g(w) in accordance
with the following program.

1. On all radii that do not meet the interval I} or its two neighboring intervals,
g(w) = 0 between the origin and the circle C,. On the two neighboring intervals of
I¥, g is a linear function (of arg w), chosen so as to provide continuity; and on the
radial segments corresponding to I¥ and its two neighboring intervals, g is a con-
tinuous linear function of |w|.

2. Suppose that g(w) has been defined for |w|<1 - 21X On each radius that
meets neither I’l'; nor its two neighboring intervals, g is constant between the circles
|w| =1-21-K ang [w] =1 - Z'k; on the neighboring intervals of I}, g is a linear
function (of arg w), chosen so as to provide continuity; and in the intersection of the
annulus 1 - 21-k < |w| < 1 - 2-k with the sector determined by If and its two
neighboring intervals, g is a continuous linear function of |w|

Clearly, each point of C lies either in at most finitely many of the intervals Iy
(or neighbors of such intervals) that arise from E,, or else in at most finitely many
of the intervals Iy (or neighbors of such intervals) that arise from E,. It follows
that the function g(w) has the radial limit 0 at each point of w(E,), and the radial
limit 1 at each point of w(E,).

In BND, we now define f by the formula f(z) = g(w(z)). The function f can easily
be extended to the remainder of D in such a way that it takes the values 0 and 1 on
L;o and Lj;, respectively (i =1, 2, --.), and so that it is continuous in D. This com-
pletes the proof.
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THEOREM 10. Not every function of Baive class 2 is a boundary function for
some continuous function.

Proof. Let E be the union of countably many perfect nowhere dense sets on C,
and let E be everywhere dense on C; then the characteristic function ¢ of E is of
Baire class 2 (see [3, pp. 368-369]). If ¢ were a boundary function for a continuous
function, then, according to Theorem 8, E would have to be the union of a countable
set and a set of type Gg. Since E is locally uncountable, the set of type G would
have to be dense, and hence residual, on C. This, however, is impossible, since E
is of first category. The proof is complete.

4. OPEN QUESTIONS

For the class of functions continuous in the disk D, the most important unsolved
problem is the characterization of the functions ¢ on C that are boundary functions.

Problem 1. If ¢ is of Baire class 2 and is a boundary function for some function
continuous in D, is ¢ merely an honorary function of Baire class 2?

Problem 2. In case the answer to Problem 1 is negative, does it become positive
under the additional hypothesis that ¢ is the characteristic function of some point
seton C?

Problem 3. If f is continuous in D and has a boundary function ¢, do f and ¢
admit a family of mutually disjoint arcs?

Pyoblem 4. In case the answer to Problem 3 is negative, is ¢ a boundary func-
tion for some continuous function g such that g and ¢ admit a family of mutually
disjoint arcs?

Problem 5. Does there exist a bounded harmonic function having a boundary
function of Baire class 2? We note that there does not exist a bounded holomorphic
function, or even a normal meromorphic function, possessing a boundary function of
Baire class 2; for if a normal meromorphic function f has a boundary function ¢,
then ¢(¢) is the radial limit of f at ¢, and therefore ¢ is of Baire class 0 or 1.
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