TYPES OF AMBIGUOUS BEHAVIOR OF ANALYTIC FUNCTIONS

G. S. Young

Let w = f(z) be a complex-valued function, defined on the open disk D composed
of all complex numbers z such that |z| < 1, and let z, be a point on the unit circle
C, that is, on the boundary of D. We recall three definitions:

(1) The cluster set of £ at z,, C(f, z,), is the set of all points w on the Riemann
sphere such that for each open set U containing z,, every open set containing w
meets the set f(UND). That is, w is in C(f, z,) provided there exists a sequence
{z;} in D such that z; — zp and f(z;) — w.

(2) The boundary cluster set of f at z,, Cgp(f, z,), is the set of all points w such
that for each open set U containing z,, every open set containing w meets

U C(f, z'), where the union is taken over all z' in UN(C -~ z,). If f is continuous,
C(f, z,) is connected, but Cg(f, zg) need not be; however, if Cg(f, zg) is not con-
nected, it has exactly two components, and these coincide with the right and left
boundary cluster sets (definition obvious!), respectively. A semi-classical theorem
of Iversen asserts that if f is meromorphic, then the boundary of C(f, z,) is con-
tained in Cg(f, zg). (See, for example, [6, Theorem 1'].)

(3) For an arc A terminating at z, on C (we shall always mean, by this expres-
sion, an arc lying in D except for one endpoint at z,;), the arc-cluster set of £ on A,
C(f, A, z,), is the set of all points w such that for every open set U containing z,,
every open set containing w meets f(A NU). Each arc-cluster set is connected, if f
is continuous.

It may happen, even with bounded analytic functions, that at a point z, in C there
exist two arcs, A, and A,, terminating at z,, for which the sets C(f, A,, z,) and
C(f, A,, z,) are disjoint. If this does occur at z,, we shall say that z, is a point of
disjoint cluster sets [10]. Bagemihl has shown [1] that even for a purely arbitrary
function the set of points of disjoint cluster sets is at most countable. The restric-
tion of the discussion to analytic functions does not strengthen the conclusion. In
fact, as Gross [7, Section 8] has shown, corresponding to each countable set
X = {xn} on C, we can choose positive numbers {a,} such that {x,} is precisely
the set of points of disjoint cluster sets of the bounded function
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If the condition of boundedness is replaced by the weaker condition that f be of
bounded characteristic, it is even possible (see [3] and [9]) to require that for every
Xp in X, the disjoint sets C(f, Aj, x,) and C(f, Az, x,,) each consist of one point
(a point x, exhibiting this phenomenon is called an ambiguous point).

Lohwater pointed out in [8] that the property of being a point of disjoint cluster
sets is a special case of a more general property, and he proposed the investigation

Received June 15, 1961.
Part of this paper was written with the support of the National Science Founda-
tion.

193



194 G. S. YOUNG

of that property. We shall say that a point z, on C has property P,, for some in-
teger n > 2, if there exist in DU z, n arcs, A, A, -+, Ay, all ending at z,, such
that for each integer k (1 < k < n) there is at least one point that belongs to all
the cluster sets C(f, Aj, zg) (j # k), but such that no point belongs to all the cluster
sets C(f, Aj, zg) (=1, 2, .-+, n). A point of disjoint cluster sets has property P,.
Unfortunately, for n > 2 there is no analogue of Bagemihl’s theorem. Bagemihl,
Piranian, and Young [2] have given an example of a bounded analytic function in D
such that the set of points with property P, is a Cantor set on C, and an example of
an unbounded analytic function in D such that each point of C has property P,.

It is rather easy to give examples of analytic functions, even schlicht functions,
defined in D such that at some point z, in C each pair of arc cluster sets in-
tersects, but such that C(f, z,) is not a point. For example, let f be a conformal
map of D onto the open set consisting of all points z lying above the closure of the
graph of y = sin(1/x), and let z, be the point on C which corresponds to the prime
end whose impression is the interval [-i, i] of the imaginary axis. Here the discon-
tinuity of f is not really bad; the more interesting discontinuities occur at points z,
where C(f, zg) - Cg(f, zg) is not empty. Our principal theorem is concerned with
conditions under which such points have property P, for n > 2. On the other hand,
we show by an example that the nonemptiness of C(f, zg) - Cg({f, zg) is not sufficient,
even for bounded analytic functions, to guarantee property P, for any n > 2.

THEOREM 1. Let f(z) be mevomovphic in the open unit disk D, and let z, be a
point of the unit civcle C such that the set Cg(f, zg) is not connected. Then the
point z, has prvoperty P,. If in addition £ is bounded, then the point z, has property
P, for all n > 2,

Proof. Since C(f, z,) is connected, but Cg(f, zg) is not, the set
C(f, zp) - Cp(f, zo)

is not empty; call it E. By the theorem of Iversen mentioned in the first paragraph,
the set E is open. The set Cgy(f, zg) is the union of two disjoint continua M, and
M,, and at least one component U of E has boundary points both in M, and M,. By
the local connectivity of the Riemann sphere, the boundary of U is contained in the
boundary of E, and it follows that the boundary of U consists of two continua, N, and
N,, where Nj is a subset of M; for j=1, 2.

Let R(f, z,) denote the range of f at z,, that is, the set of all points w such that
every neighborhood of z, contains a point z for which w = f(z). The Gross-Iversen
Theorem [6, Theorem 2]0 states that R(f, z,) contains all but at most two points of U.
Let J be a simple closed curve in UNR(f, z,) that separates N, from N, and, for
topological simplicity, that does not pass through the image of any point z for which
* fY(z) = 0. Then each component of f-!(J) is either a simple closed curve, or else it
is homeomorphic to an open interval, since f acting on f~(J) is a local homeomorph-
ism. (The restriction that f'(z) # 0 on the preimage of J presents no difficulty; for
there exist only countably many points w on the Riemann sphere such that f' vanishes
at some preimage of w, and the curve J can therefore always be constructed as an
appropriate polygon.)

Let V denote the closure of a disk with center at z,, andlet v=VNC - z,. We

suppose that V is chosen small enough so that the set U zev C(f, z) lies at a posi-
tive distance from the set £ !(J). Then only a finite number of components of £~ 1(J)
meet Bdry V. Otherwise some point w of DN Bdry V would be the limit of a se-
quence of points from distinct components of £-'(J). The point w cannot belong to C,
for then C(f, w) would meet J. But w cannot belong to D, since on f~!(J) the map f
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is a local homeomorphism. Also, z, is the only point of CNV that can possibly be a
limit point of a component of f~*(J). If there is a component K of f~(J) that has z,
as limit point, then the set KUz, contains an arc A terminating at z, and

C(f, A, z,) is contained in J. In fact, C(f, A, z,) consists either of a point or else

of all of J.

Next we show that some component of £~1(J) has z, as a limit point. If no com-
ponent of £~!(J) has z, as limit point, then we can join each pair of points x and x!
on VNAC by anarc ¢ in VND U(xNx') that does not meet the set £f~*(J). The con-
nected set f(o) meets each of C(f, x) and C(f, x'), but it does not meet J. There-
fore, for x fixed, each set C(f, x') lies in the same complementary domain of J as
does C(f, x). It follows that Cg(f, zg) lies in that complementary domain, which
contradicts the fact that J separates N, from N,. Therefore, one of the components
of f~1(J)NV contains an arc terminating at. z,.

Since there are uncountably many disjoint simple closed curves satisfying the
conditions imposed on J, there are uncountably many arcs approaching z, such that
the arc cluster sets on any two are disjoint. Thus z, has property P, in a strong
form.

Up to this point, we have assumed only that f is meromorphic. We now show
that if f is also bounded, it has property P, for n > 2. Note first that there is at
most one asymptotic value of f at z,, by Lindelof’s Theorem. Let Jj, J2, -, J, be
a set of n simple closed curves such that (1) each curve Jk lies in R(f, z,) and
separates N, from N,; (2) no curve Jy passes through the image of a point z for
which f'(z) = 0; (3) no curve Jyx passes through an asymptotic value of f at z;

(4) each n - 1 of the curves have a point in common; and (5) no point lies on all the
curves. From the preceding paragraphs it follows that there are n arcs

Ay, Az, ***, A, in D Uz, such that C(f, Ay, zg) =Jx (k=1, 2, ---, n). Thus z, has
property Pp for each n > 2.

Now let Cggr(f, z¢) and Cg(f, zg) denote respectively the right and left bound-
ary cluster sets at z,. We have the following corollary to Theorem 1.

THEOREM 2. Let f be mevomorphic in the open unit disk D, and lel z, be a
point of the unit civcle such that theve exists an arc A tevyminating at z, for which
C(f, A, zg) N Cgr(f, z¢) is empty. Then the point z, has property P,. If in addition
f is bounded, then the point z, has property Py for all n > 2,

Proof. Join the endpoint of A in D to C by an arc A' not terminating at z,.
Let D' denote the component of D - A - A' whose boundary contains an arc of C
abutting on z, from the right. There is a conformal homeomorphism ¢ of D onto
D', which can be extended to a continuous homeomorphism of C1 D onto Cl D'. Let
z, denote ¢~(z,), and consider the map f¢ defined in D. We have

Thus we can apply Theorem 1 to the map f¢ and assert that z, has property P,, and
if f is bounded, that z, has property P, for n> 2. However, the fact that ¢ is a
homeomorphism implies that z, has property P, for f whenever z, has that prop-
erty for f¢.

A special case of Theorem 2 is the following result.

THEOREM 3. Let £(z) be mevomorphic in D, and suppose that theve exists an
open avc A of C on which the modulus |f(re19)| has radial limit 1 for almost all
points eif in A. Suppose that the point z, lies on the open arvc A .and is not the
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limit of zeros ov poles of f(z). Suppose further that C(f, zg) - Cy(f, zg) is not
empty, Then z, has properiy P,. If f is bounded, z, has property P, for nZ 2.

Proof. A theorem of Carathéodory’s [4] implies that at each singular point of f
in A the cluster set is either the set M = CUD or the set N that is the complement
of D, or the entire plane. If z, is an isolated singularity of f, the set Cg(f, zg) is
C. I it is not an isolated singularity, the set Cg(f, zg) is either M or N; it cannot
be MU N, since it is a proper subset of C(f, z,). Therefore there exists a subarc A'
of A containing z, such that at every singular point z' of f in A' - z,, the set
C(f, z") is Cgx({, z().

A theorem of Lohwater’s [8, Theorem 8] asserts that if f(z) is meromorphic in
D, if the modulus |f(z)| has radial limit 1 almost everywhere on an open subarc of
C, and if z, is a point of A that is not a limit of zeros or poles of £, then a neces-
sary and sufficient condition for z, to be a singularity of f(z) is that every subarc
A" of A that contains z, also contains a point at which 0 or « is an asymptotic
value. Examination of the proof shows that if z, is a singularity of f, one can
strengthen the conclusion somewhat: If 0 and « are both in C(f, z,), then both are
asymptotic values in A", Applying this result to the arc A' of the last paragraph,
we can say that there exist two arcs B and B' terminating at points of A' such that
on B, f(z) approaches 0 and on B', f(z) approaches «. Since either 0 or « does
not belong to the cluster set of any point in A' - z,, one of the arcs B and B' termi-
nates at z, and has the property that the corresponding asymptotic value is not in
Cg(f, z9). This establishes the hypotheses of Theorem 2, and our conclusion follows.

I suspect that the following is true.

CONJECTURE. Let f(z) be a bounded analytic function in D, and suppose that
the modulus of £ has radial limil 1 almost everywheve on an open arc A of C. If
z, 1S a singularity of £ in A, then eilther z, has property P, for every integer
n> 2, or for every arc B lerminating al z, the set C(f, B, z,) contains the entive
cirvcle C.

In [2], the authors give an example of a Blaschke product £(z) such that the point
w =1 is in the cluster set of every arc terminating at the sole singularity z = 1, so
that an isolated singularity need not have property P;. The following example goes
somewhat further: it shows that the set common to all arc-cluster sets of arcs
terminating at z = 1 can vary from the closed disk down to quite thin continua. How-
ever, the example does not have a radial limit of modulus 1 almost everywhere.

EXAMPLE 1. Let D,, D,, D,, -+- be a sequence of simply connected domains ly-
ing with their boundaries in the open unit disk D, such that no two have a point or a
boundary point in common, and such that lim diam D, = 0. Let K denote the sel

(DucQC) - U j Dj. Then theve exists a function {(z), analytic and bounded by 1 in D,
and continuous in DU C except at the point z = 1, such that

(@) C{, 1) = DUC,
(b) CB(f; 1) = K,
(c) if A is an arc terminating at 1, then C({, A, 1) contains K,

(d) theve exist uncountably many arvcs A, terminating at 1, for which
C(f, A, 1) = K.

Proof. Suppose, for initial simplicity, that z = 0 is not in any set Cl Dy. Let

¢(z)=exp(z+1).

z -1
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Fig. la.
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Fig. 2.

Then for each k=1, 2, 3, ---, $~1(Dy) is the union of an infinite set of simply con-
nected domains Dgj (j =1, 2, 3, ---) in D; each of the sequences {DkJ}J 1 converges

to z = 1; and no two domains of the family {Dk } have intersecting closures. (See
Figure 1.) It follows that the set of all domams D kj k,j=1,2, 3, --+) satisfies all
the conditions imposed on the original domains. Let K! denote the continuum

(cu D) - U x;jDy;.

The range of ¢ at 1, R(¢, 1), contains all of D except z = 0. The set KN (D - 0)
contains a countable dense subset S. Since D - 0 is contained in R(¢, 1), we can
find a sequence x,, x,, X5, *** of points of KN D converging to z = 1 and such that

U ¢(x) is S. There ex1sts a sequence E,, E,, E;, -« of open disks in D such that
for each j=1, 2,3, -, the point x; is a point of E; i and such that if {y;} is any
other sequence of pomts with y;j m E; =1,2,3, ), then {¢(y} is also dense
in K. (The sets E; may very possibly overlap some of the sets Dyj. Indeed, they
all must do so in those cases in which K has no interior points.)

There exists a monotone map m of K' onto Cl D such that the inverse of a
point of C1 D consists either of a single point or of the boundary of a domain Dkj.
This is a consequence of a well-known theorem of R. L.. Moore on upper-semicon-
tinuous collections of plane continua [11, p. 171]. The set T of points y in Cl D
such that m~1(y) is non-degenerate is countable, and hence each pair of points of
Cl1D - T can be joined by an arc A in Cl1 D - T. Since m is one-to-one on the
compact set m-*(A), this set is also an arc. It follows that the set

K!' -~ Uijdry ij
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is arcwise connected. Using this fact, we can construct in K' a sequence of arcs
Ay Agps Agyy Agy Agyy Agy, o+ such that

(1) for each n and j (n=1, 2, 3, -*+, j =1, 2), the arc Apj lies in K'ND except
for one endpoint, Zpj = €Xp i04j;

(2) the sequence {#,;} of numbers is strictly decreasing and the sequence
{an} is strictly increasing, and each converges to 0;

(3) each arc Ayj joins zy; to a point of Ey;

(4) no two arcs Ay; intersect;

(5) lim Anj = 1; and

(6) no set Cl D, intersects any arc An; (See Figure 2.)

Let L=CU U njAnj- Then L is a Peano continuum that does not separate D.
If A is any arc in DU{1} that has z = 1 as one endpoint, but that has no other point
in common with L, then A must intersect all but a finite number of the sets E,. By
the definition of {E,}, D(f, A, 1) contains K. The property (6) permits us to con-
struct many arcs in K' - L ending at z = 1, and for these, the arc cluster set is
exactly K.

The set D - L. is simply connected, so that there exists a conformal map ¥(z)
of D onto D - L., Since L is a Peano continuum, { can be extended to be continuous
on DUC. There is no loss in assuming that (1) = 1. Note that if B is an arc in
DuU {1} approaching 1, then ¥(B) intersects all but a finite number of the sets Ej.

Now let i(z) = ¢((z)). Then £f(z) satisfies all the desired conditions. If z = 0
does lie in a set Cl Dy, there exists a linear map that leaves the circle C fixed and
sends z = 0 into a point of K. The composition of this map and f is the desired
map.

That one can have a bounded analytic function on the disk with a point of discon-
tinuity on the circle such that every two arc cluster sets at that point intersect is of
course not new. One needs only consider a conformal map from the disk onto a
simply connected domain not all of whose prime ends are of the first kind.

I now show that part of the phenomenon of Example 1 is not due to the point 1 be-
ing an isolated discontinuity of the function f(z) in that example. The example also
gives a partial answer to Question 4 in [2]. This question concerns a function having
radial limits of modulus 1 almost everywhere on the circle, and it asks whether the
nonisolated singularities of f on the circle have property P, or are at least limits
of points with property P,.

EXAMPLE 2. Let K be a set satisfying the conditions on the set K in Example
1. Then theve exists a function £(z), analytic and bounded by 1 in D, and continuous
in DUC except at the points of a Cantor set T, such that for each pointt in T

(@) C(t, t) is contained in DUC,
(b) Cg(f, t) = K,
(c) if A is an arc terminating at t, then C(f, A, t) contains K,

(d) there exist uncountably many avcs A terminating at t for which
C(, A, t) = K.

Proof. For each pair of integers n and k (n> 2 and k odd) such that
0 < k/2" < 1, construct a line segment I, of length 1/2", with one endpoint at



200 G. S. YOUNG

z = 0, and making an angle k#/2” with the positive real axis. Let T" denote the
union of all the intervals I, thus defined.

If f(z) denotes the map constructed in Example 1, the components of the set
(D - K) are simply connected open sets with pairwise disjoint closures H; Again
using Moore’s theorem, we obtain a monotone map m of Cl D onto itself such that
the inverse of a point in Cl1 D is either a point in f-}(K) - jH ; or is a set Hj, and

such that m(1) = 1. The sequence of points m(H,), m(H,), -+ is countable, and thus
is easily avoided, so that we can construct a set T' in DU{1} that is homeomorphic
to the set T", has its “interesting point” at z = 1, and contains none of the points
m(H;). Let T denote m~*(T". Then T is homeomorphic to T', and (T - {1}) lies
entirely in K. Let D' denote D - T. Then D' is simply connected, so that there
exists a conformal map £(z) of D onto D', Since CUT is a Peano continuum, ¢ can
be extended to be continuous on all of Cl D. The inverse of z =1 under £ is a Can-
tor set on C. The desired map is £(£(z)).

We cannot replace the words “is contained in DU C?” in part {a) by “is equal to
DU C,” for Collingwood [5] has recently shown that the set of points on C where the
boundary cluster set is not equal to the cluster set is countable, even for purely
arbitrary complex functions defined in D.
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