A REMARK ON SOME ALMOST PERIODIC COMPACTIFICATIONS

Irving Glicksberg

1. The author is indebted to K. de Leeuw for raising the following, at first glance rather bizarre, question: if G is a noncompact, locally compact abelian group, with almost periodic compactification G^* , is G^* the Stone-Čech compactification $\beta(G^* \setminus G)$ of $G^* \setminus G$? (As usual, we view G as a subset of G^* .) At least when the character group G^* of G is not totally disconnected, the answer is affirmative (when G^* is totally disconnected, our approach simply fails).

Actually de Leeuw's question is not at all unnatural, since G forms a rather small part, and thus $G^* \setminus G$ a rather large part, of the "large" space G^* , as is more or less well known. For example, Borel subsets of G, that is, elements of the σ -ring generated by compact sets, are of G^* -Haar measure zero, so that, if G is σ -compact, G itself is of G^* -Haar measure zero; a special proof for G = R appears in [2, Thm.4.3], but one can argue that if a Borel set E of G (automatically a Borel set in G^*) is of positive G^* -Haar measure, then E - E has interior in G^* , so that G is imbedded homeomorphically in G^* . As a dense locally compact subgroup, G must fill out all of G^* , and $G = G^*$ is both compact and noncompact.

Since there are few tools available for showing a compact space to be the Stone-Čech compactification of a given subspace, there is probably no need to apologize for our use of the known structure of locally compact abelian groups; and while the result may be classed as a curiosity, it seems worth recording.

The notation used below is standard, as in [3], [4]; however we shall speak of the "direct product," where Kaplansky [3] uses "complete direct sum," for topological suggestiveness (if H is a compact group and we express H^{*} as a (weak) direct sum, there is a dual representation of H as a direct product, *topologically* and algebraically). Finally, we shall let G^d represent the discretized version of G, so that $G^* = G^{d^*}$ [4, p. 170].

2. Let $\{X_{\nu}\}$ be an uncountable set of compact Hausdorff spaces, $b = \{b_{\nu}\}$ an element of the topological product $X = \Pi X_{\nu}$, and X^b the subspace of X formed by all elements $x = \{x_{\nu}\}$ with $x_{\nu} \neq b_{\nu}$ for at most countably many ν . Then [1, Thm. 2] $\beta(X^b) = X$; therefore clearly $X^b \subset Y \subset X$ implies $\beta(Y) = X$.

Now suppose that G is our noncompact but locally compact abelian group, and that we can represent G^* as a direct product of uncountably many compact groups. (Such a representation is not always possible if G^* is totally disconnected; for example, if G^* is the compact group of p-adic integers, an algebraically indecomposible group, $G^* = G^{d^*}$ is not a product.) Then it will suffice to show that

(2.1)
$$G^* \neq G + G^{*o}$$

where G^{*o} is the subgroup of the product G^* consisting of all elements with at most countably many coordinates different from 0. For then $G^* \setminus G$ contains a coset of G^{*o} , and the result of [1] cited above applies.

Received December 7, 1959.

In order to obtain a direct product representation for G^* , we appeal to the known structure of G^* [5, p. 110]: $G^* = \mathbb{R}^p \times H$, where H contains a compact-open subgroup. If G^* is not totally disconnected, then either (1) p > 0 or (2) G contains a nontrivial compact connected subgroup. We consider these cases separately.

Consider case (1), where $G^* = R \times F$. Since R is algebraically an uncountable direct sum $\mathbb{E} Q_{\nu}$ ($Q_{\nu} = Q$, the group of additive rationals), we can write

$$G^{d} = (\Sigma Q_{\nu}^{d}) \times F^{d}$$
.

And since G^* is simply the dual of $G^{\circ d}$, we have $G^* = (\Pi Q_{\nu}^{d \circ}) \times F^{d \circ}$. Now let G^{*o} have the meaning indicated above. If (2.1) fails, then for each element χ of $G^* = G + G^{*o}$, there exists a countable set J of indices ν for which χ is continuous on the subspace $(\Sigma_{\nu \notin J} Q_{\nu}) \times \{0\}$ of $G^{\circ} = R \times F$, since χ coincides with some $g \in G$ on such a subspace. But we can define a character χ of $G^{\circ d}$ for which this fails; simply choose a character α of Q^d which is not continuous in the euclidean topology, and set $\chi(\{q_{\nu}\}, f) = \Pi \alpha(q_{\nu})$ (a finite product).

Now consider case (2), where G contains some nontrivial compact connected group H. Here H is torsion-free, and has a countable torsion-free factor group H /K. Indeed, choose a maximal independent subset $\{x_{\alpha}\}$ of H , and for a fixed α , let

$$K = \left\{ x: x \in H^{\hat{}}, nx = \sum_{i=1}^{m} n_i x_{\alpha_i} \text{ for some integers } n, n_i, \text{ with } \alpha_i \neq \alpha \right\}$$

when
$$i = 1, 2, \dots, m$$
.

Clearly K is a subgroup for which $nx \in K$ implies $x \in K$, so that H^*/K is torsion-free and infinite (since it contains the infinite cyclic group generated by the coset \overline{x}_{α}). But H^*/K is countable as well since, by maximality, for $x \in H^*$, $nx - mx_{\alpha} \in K$ for some n, m (or $n\overline{x} = m\overline{x}_{\alpha}$), and this determines uniquely the coset \overline{x} (since H^*/K has no torsion).

Therefore H contains a nontrivial compact connected and metric group $K^{\perp}=(H^{\wedge}/K)^{\wedge}$, and we may as well assume that H is metric. Since the compact connected group H is divisible, it is algebraically a direct summand of G, and moreover it is itself a direct sum $\mathbb{E}\,H_{\nu}$, where each H_{ν} is isomorphic to Q or $Z(p^{\infty})$ for some prime p, and the indices are uncountable [3, pp. 55, 8, and 10]. Consequently we can write $G^{\wedge d}=(\mathbb{E}\,H_{\nu}^{d})\times F^{d}$, and $G^{*}=(\Pi H_{\nu}^{d})\times F^{d}$. Again, if (2.1) fails, for each χ in G^{*} there is a countable J for which χ is continuous on the subspace of G^{\wedge} formed by $(\mathbb{E}_{\nu\notin J}\,H_{\nu})\times \{0\}$. We can thus obtain our contradiction by showing that for each ν there is a χ_{ν} in H_{ν}^{d} which is not continuous in the relative topology on H_{ν} , and by setting $\chi(\{h_{\nu}\}, f)=\Pi\,\chi_{\nu}(h_{\nu})$. To obtain the χ_{ν} , we need the following

LEMMA. Let H_0 be an infinite algebraic subgroup of a metric compact abelian group. Then there is a χ in $H_0^{d_*}$ which is not continuous in the relative topology.

If not, each χ in $H_0^{d^*}$ is uniformly continuous relative to the group structure, and thus it extends to a character of H_0^- . Consequently, we can identify H_0^- and H_0^{d*} ; since H_0^- is compact metric, it has a countable dual; on the other hand $H_0^{d^*}$ is an infinite compact group, therefore uncountable (since, by category, locally compact countable groups are discrete), so that $H_0^{d^*} = H_0^{d*^*} = H_0^{d^*}$ is also uncountable. This is the desired contradiction.

Finally we note that (2.1) implies $G^* \setminus G$ is pseudo-compact [1], and thus that no element of $C(G^*)$ assumes its maximum modulus only within G.

REFERENCES

- 1. I. Glicksberg, Stone-Čech compactifications of products, Trans. Amer. Math. Soc. 90 (1959), 369-382.
- 2. E. Hewitt, *Linear functionals on almost periodic functions*, Trans. Amer. Math. Soc. 74 (1953), 303-322.
- 3. I. Kaplansky, Infinite abelian groups, Univ. of Michigan Press, Ann Arbor, 1954.
- 4. L. H. Loomis, An introduction to abstract harmonic analysis, Van Nostrand, New York, 1953.
- 5. A. Weil, L'intégration dans les groupes topologiques et ses applications, Actual. Sci. Ind. no. 869, Hermann et Cie., Paris, 1940.

University of Notre Dame