A REMARK ON SOME ALMOST
PERIODIC COMPACTIFICATIONS

Irving Glicksberg

1. The author is indebted to K. de Leeuw for raising the following, at first
glance rather bizarre, question: if G is a noncompact, locally compact abelian
group, with almost periodic compactification G*, is G* the Stone-Cech compactifi-
cation B(G* N\G) of G¥*\ G? (As usual, we view G as a subset of G*.) At least
when the character group G* of G is not totally disconnected, the answer is affirm-
ative (when G~ is totally disconnected, our approach simply fails).

Actually de Leeuw’s question is not at all unnatural, since G forms a rather
small part, and thus G* \G a rather large part, of the “large” space G¥*, as is
more or less well known. For example, Borel subsets of G, that is, elements of
the o-ring generated by compact sets, are of G*-Haar measure zero, so that, if G
is o-compact, G itself is of G*-Haar measure zero; a special proof for G =R ap-
pears in [2, Thm.4.3], but one can argue that if a Borel set E of G (automatically a
Borel set in G*) is of positive G*-Haar measure, then E - E has interior in G*, so
that G is imbedded homeomorphically in G*. As a dense locally compact subgroup,
G must fill out all of G*, and G = G* is both compact and noncompact.

Since there are few tools available for showing a compact space to be the Stone-
Cech compactification of a given subspace, there is probably no need to apologize for
our use of the known structure of locally compact abelian groups; and while the result
may be classed as a curiosity, it seems worth recording.

The notation used below is standard, as in [3], [4]; however we shall speak of the
“direct product,” where Kaplansky [3] uses “complete direct sum,” for topological
suggestiveness (if H is a compact group and we express H* as a (weak) direct sum,
there is a dual representation of H as a direct product, fopologically and algebrai-
cally). Finally, we shall let Ggd represent the discretized version of G, so that
G* = G4~ [4, p. 170].

2. Let {X,} be an uncountable set of compact Hausdorff spaces, b= {b,} an
element of the topological product X = [I1 X,, and XP the subspace of X formed by
all elements x = {x,} with x, # b, for at most countably many v. Then [1, Thm. 2]
B(XP) = X; therefore clearly XP C Y C X implies B(Y) =

Now suppose that G is our noncompact but locally compact abelian group, and
that we can represent G* as a direct product of uncountably many compact groups.
(Such a representation is not always possible if G* is totally disconnected; for
example, if G~ is the compact group of p-adic integers, an algebraically indecom-
posible group, G* = G*9* is not a product.) Then it will suffice to show that

(2.1) G* + G+ G*°
where G*° is the subgroup of the product G* consisting of all elements with at most

countably many coordinates different from 0. For then G* G contains a coset of
G*o, and the result of [1] cited above applies.
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In order to obtain a direct product representation for G*, we appeal to the known
structure of G* [5, p. 110]: G* = RP X H, where H contains a compact-open sub-
group. If G* is not totally disconnected, then either (1) p > 0 or (2) G contains a
nontrivial compact connected subgroup. We consider these cases separately.

Consider case (1), where G* = RX F. Since R is algebraically an uncountable
direct sum B Q, (Q, = Q, the group of additive rationals), we can write

G4 = (2 Q) x FI.

And since G* is simply the dual of G*¢, we have G* = (IIQ?,“) x F9*, Now let G*°
have the meaning indicated above. If (2.1) fails, then for each element X of

G* = G + G*9, there exists a countable set J of indices v for which X is continuous
on the subspace (B ¢y Qy) X {0} of G* = R X F, since X coincides with some g€ G
on such a subspace. But we can define a character X of G4 for which this fails;
simply choose a character a of Q2 which is not continuous in the euclidean topology,
and set x({ap}, f) = Da(qy,) (a finite product).

Now consider case (2), where G~ contains some nontrivial compact connected
group H. Here H" is torsion-free, and has a countable torsion-free factor group
H*/K. Indeed, choose a maximal independent subset {xy} of H", and for a fixed «,
let

m
K= {x: xeH, nx= 2 n; Xgy, for some integers n, n;, with oy # o

i=1
when i=1, 2, *--, m} .

Clearly K is a subgroup for which nx € K implies x € K, so that H"/K is torsion-
free and infinite (since it contains the infinite cyclic group generated by the coset Xg).
But H*/K is countable as well since, by maximality, for x€ H*, nx - mxg€ K for
some n, m (or nx = mXy), and this determines uniquely the coset X (since H"/K has
no torsion).

Therefore H contains a nontrivial compact connected and mefvic group
K" = (H*/K)", and we may as well assume that H is metric. Since the compact con-
nected group H is divisible, it is algebraically a direct summand of G, and more-
over it is itself a direct sum B H,,, where each H, is isomorphic to Q or Z(p®) for
some prime p, and the indices are uncountable [3, pp. 55, 8, and 10]. Consequently
we can write G*9 = (Z HY) x F4, and G* = (IIHY") x F4*.  Again, if (2.1) fails, for
each X in G* there is a countable J for which X is continuous on the subspace of
G* formed by (B ¢y Hy) X {0}. We can thus obtain our contradiction by showing
that for each v there is a Xy in HY" which is not continuous in the relative topology
on H,, and by setting x({h,}, f) = II Xp(h,). To obtain the X ,, we need the following

LEMMA. Let H, be an infinite algebraic subgroup of a metric compact abelian
group, Then theve is a X in Hgl* which is not continuous in the velative topology.

If not, each x in HS‘"- is uniformly continuous relative to the group structure,
and thus it extends to a character of H,. Consequently, we can identify H, and HZ*;
since H, is compact metric, it has a countable dual; on the other hand H{" is an in-
finite compact group, therefore uncountable (since, by category, locally compact
countable groups are discrete), so that H{*4 = Hd** = H,~ is also uncountable. This
is the desired contradiction.
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Finally we note that (2.1) implies G* ~G is pseudo-compact [1], and thus that no
element of C(G*) assumes its maximum modulus only within G.
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