TRANSFORMATION GROUPS ON A K(w, 1), I

P. E. Conner and D. Montgomery

1. INTRODUCTION

The purpose of this note is to give some results on transformation groups and
fiberings for a finite-dimensional Eilenberg-MacLane space K(m, 1), a space whose
one-dimensional homotopy group is 7 and whose remaining homotopy groups vanish.
The Eilenberg-MacLane spaces are discussed in [1], and are treated completely in
[2]. We are interested here only in the most elementary facts about K(w, 1) and
K(m, 2). Eilenberg and Ganea [3] have pointed out that the existence of a finite-
dimensional K(w, 1) for a given group 7 is an intrinsic algebraic property of =.

We were led to this topic by several considerations. For one thing, a special
case of transformation groups on a finite-dimensional K(w, 1) is quite classical;
namely, the study of transformation groups on closed Riemann surfaces of positive
genus. Theorem 5.1 contains a generalization of H. A. Schwarz’ theorem that no
closed Riemann surface of genus larger than 1 can admit a 1-parameter family of
complex analytic transformations. The theorem of Montgomery and Samelson [5] to
the effect that the only compact connected Lie group which is transitive and effective
on a torus is a toral group led us to conjecture and prove that the assumption of
transitivity could be dropped. Paul Smith proved that the fixed point set of a cyclic
transformation group of prime order p acting on a sphere has the mod p homology
groups of a lower-dimensional sphere. In Theorem 3.4 we show that the fixed point
set of a cyclic transformation of prime order on a K(#, 1) also inherits the mod p
homology characteristics of the K(m, 1). We feel that Smith’s theorem and our
Theorem 3.4 are but the two extreme cases of some general relation between the
homotopy groups of a space and the cyclic transformations of prime order on that
space. This is the real motive for the present note, namely, to initiate the develop-
ment of extensive relations between homotopy groups and cyclic transformations.

We show that if a finite-dimensional K = K(w, 1) is fibered by a connected fiber
F with base B, then F is a K(7,(F), 1) and B is a K(7,(B), 1). Our principal result
concerns those compact manifolds that are aspherical; that is, K(w, 1)-spaces that
are compact manifolds. We prove that if a compact connected Lie group acts effec-
tively on such a manifold, then the group is a toral group; moreover, this group must
act freely, and if 7 is abelian, there is a cross section in the large. Hence, the ac-
tion might be called a product action.

The K(w, 1)-spaces are assumed to be connected, locally compact, finite-
dimensional ANR’s. In this note we use the Alexander-Wallace-Spanier cohomology
(AWS-cohomology). We denote a discrete group by w, a topological group operating
on a space by (G, X), and the natural projection of X onto the orbit space X/G by

p: X —X/G.
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If g€ G, then by F(g) c X we denote the set of fixed points under g. Let F(G) c X
be the set of points fixed under the entire group. A group is said to operate freely if
F(g) is empty for all g different from the identity. The action is said to be proper
if, for every x € X, there is an open neighborhood V of x with the property

gV NV =4 unless g is the identity. Let Y denote the universal covering space of X.
If 7 =w,(X) is the fundamental group, then 7 operates naturally on Y as a proper
transformation group. Let

m:Y—X

denote the covering map.

2. A THEOREM ON FIBERINGS

THEOREM 2.1. Let [K, B, F, p] denote a locally trivial fibering of a finite-
dimensional space K = K(m, 1), by a connected fiber ¥, over a base B. Then F is a
K(m,(F), 1) and B is a K(un,(B), 1), and w,(F) is injected isomorphically on a normal
subgrvoup of w.

Let Y be the universal covering space of K = K@r, 1), and let m be the covering
map

m: Y —K.
The map
pm: Y —B

(first m, then p) can be seen to give a fibering of Y over B. A component F* of
one of these fibers is that regular covering space of F which corresponds to the
kernel of the injection homomorphism

iy m(F) — 7 (K(m, 1)).

Let X be the space obtained by considering each component of the above fibers as a
point, and let b be the map

. b: Y — X.

Then b is a fiber map with fiber F*. The space X is simply connected, and it is the
universal covering space of B. The homotopy sequence of this fibering is then

= Ty (O = 1 X) = 7, (FF) = m,(Y) — 7,(X) — -

It follows that

‘"i.!.]_ (X) = ﬂi(F*) (1 _>_ 1) ’
and consequently 7,(F*) is abelian. Hence 7,(F*) is H,(F*; Z), the singular one-
dimensional homology group over Z.

Now Hy(F*; Z) = 0 (i > 1), as follows for example from Serre [7, p. 467]. Hence
7,(F*) = 0. But then 7;(F*) = H;(F*; 2) = 0 (i > 1). This proves that F and B are
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K(m, 1)-spaces. We see that F* is the universal covering space of F, and that i, is
an isomorphism onto a normal subgroup of =.

The only compact connected Lie group which is a K(w, 1)-space is the torus; from
this we see at once that if the fibering of the theorem is a principal fibering by a
compact connected Lie group, then the group is a torus.

3. COVERING TRANSFORMATION GROUPS

We shall assume that X is locally compact, separable metric, arcwise con-
nected, arcwise locally connected and semi-locally 1-connected. We shall assume
that (G, X) is a topological transformation group with at least one fixed point. We
shall cover (G, X) by a transformation group (G, Y) on the universal covering space
of X. In what follows, we select a fixed base point q € X, and it is necessary to se-
lect q to be a point fixed under all of G.

Let P(q) be the space of all paths in X beginning at q, topologized as usual by
the compact-open topology. Since q is a stationary point, the group G operates on
P(q) in a natural way. An equivalence relation is introduced into P(q) by saying that
two paths a(t) and g(t) are equivalent if ¢(1) = 8(1) and if the loop

o (2t) (0<t<1/2),
B(2(1 -t) (1/2<t<1)

represents the identity element in 7,(X, q). The action of the group G on P(q) pre-
serves this equivalence relation, for gy(t) also represents the identity of 7,(X, q),
and certainly ga(1) = gB(1). The space of equivalence classes in P(q) may be identi-
fied with Y; the covering map is obtained by projecting a representative path onto its
endpoint.

The action of 7,(X, q) ~7 on Y is defined as follows. Let o(t) be a loop in X at
q representing o€ 7,(X, q). For any path o(t) in P(q), we define a new path
o(2t) 0<t<1/2)
a@@t-1) (1/2<t<1).

The equivalence class of (goa)(t) depends only on o € 7,(X, q) and on the equiva-
lence class of a(t). If g€ G, then

g(oo a)(t) = (g(0) o(ga))(t);

thus

(1) g{o(y)) = (g, (o)) (gy)

for ye Y, g€ G and 0 € 7,(X, q). We see that (G, Y) covers (G, X) in the sense
that m(gy) = gm(y). Formula (1) gives us the relation between the actions of G and
7=m(X, X) on Y. We shall say that (G, X) is 1-#7ivial at q if and only if g, (o) =0
for all g€ G and o€ 7,(X, q). If G is 1-trivial at q, then the actions of G and 7

on Y commute. It should be noted that (G, X) is 1-trivial at q if G is arcwise con-
nected. This remark needs only a little clarification. If (G, X) is arcwise connected,
then G is 1-trivial at each fixed point of G. Let q € X be a fixed point, and select
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g€ G. Let aft) be a path in G joining e to g-1. We define a homotopy g: = a(t)g.
Obviously g, = g and g, = e. During the homotopy, q is not moved; hence

g*: m,(X, q) — 7,(X, q) is trivial. Also, we note that if G is 1-trivial at the fixed
point q, then it is 1-trivial at every other fixed point which can be joined to g by an
arc of fixed points.

LEMMA 3.1. If K(w, 1) is finite-dimensional, then n = ,(K) contains no ele-
ments of finite ovder.

The universal covering space of K is a contractible finite-dimensional locally
compact ANR. Hence the Lemma is a consequence of Smith’s fixed-point theorem
for periodic maps [8, p. 367].

LEMMA 3.2. Let X be a finite-dimensional K(w, 1)-space, and let (G, X) be a
1-trivial finite transformation group at the fixed point q. For any g€ G, let
F(g) © Y be the counter-image of F(g) C X under the covering map. Then F(g) is
exactly the fixed point set of g in the covering action (G, Y).

Suppose that m(y) € F(g); then gy = oy for some o € 7,(X, q). Since g has finite
order, say r,

g-lgy=g¥loy=o0gTly=0Ty=y.

Now 7 acting on Y has no fixed points and no elements of finite order, so that o =e
and gy =Y.

LEMMA 3.3. Let X be a finite-dimensional K(n, 1)-space. Let (G, X) denote a
compact connected Lie group acting on X with at least one fixed point. Then ¥(G),
the countev-image of ¥(G) under the covering map, is the fixed point set of the
covering action (G, Y).

This follows from Lemma 3.2 and the fact that the elements of finite order in a
compact connected Lie group are dense. The set F(Q) is the intersection of the sets
F(g) taken over all elements of finite order in G. This proves the lemma, which will
be useful later.

THEOREM 3.4. Let K be a finite-dimensional K(u, 1)-space, and let Z, be the
cyclic group of prime ovder. If (Zp, K) is a 1-trivial action at the fixed pomt a,
then

i*: H*(F(ZP); Zp) = H¥*(K; Zp) .

The proof involves the cohomology of a discrete group (see [1, Chap. 1-13] for a
discussion of this concept). It should be noted that H*(m; Z_) ~ H (K; Z p) by defini-
tion. Let (ZP Y) denote the covering action of (ZP K). Since Y isa contractlble
finite-dimensional ANR, it follows from Smith’s theorem that the fixed point set
F(Zp) C Y is connected, locally connected and acyclic mod p [8, p. 364]. Since the
actions of Z, and 7 on_Y commute, there is a proper transformation group
(m, F(Zp)) The space F(Zp) is a locally compact, connected, locally connected,
closed subset of a separable metric space. Cartan has shown [1, 11-10] that for
AWS-cohomology there is a spectral sequence {ES:t} with

t ~
B3t = Hom H (F(Z,); 2,))

whose E,-term is associated with H*(F(Zp); Z,). However, 'F(Zp) is acyclic
mod p, so that
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Sy_. S .
H®(m; Z,) = HY(F(Zp); Zp) .

We omit the proof that the inclusion map induces the isomorphism. This completes
the argument.

THEOREM 3.5. If (T, K) denotes an r-dimensional toval group acting with at
least one fixed point, then

i*: H*(F(T¥); Z) ~ H*(K; Z).

The same proof applies, since f(Tr) C Y is acyclic over the integers; we omit
the details.

4. DIMENSION OF F(Zp)

If 7 has a finite-dimensional K(w, n), then the abelian subgroups of 7 can not
have arbitrarily large ranks. In fact, the rank can not exceed the dimension of
K(m, 1). For any 7, let N(7) denote the largest possible rank of an abelian subgroup
of 7.

THEOREM 4.1. Let (Zp, K(7w, 1)) denote the action of a cyclic group of prime
ovder on a finite-dimensional K(m, 1) which is 1-trivial at some fixed point q; then

1 < N(m) < dim F(Z).

This is a lower bound on the dimension of F(Zp). Let f(Zp) C Y be the fixed
point set of Z, in the covering action (Zp, Y). Let H C 7 be a free abelian sub-
group of rank N(m); then the action of 7 on Y induces a proper action of H on F(ZP),
which is acyclic mod p; therefore F(p)/H has the cohomology mod p of an N()-
dimensional torus, so that dim F(Zp)/H = dim F(Zp) > N(n).

The point of Theorem 4.1 is that N(7) might be greater than the largest integer
for which H'(K (7w, 1); Zp) # 0. This is the situation for knot groups. If K c S® is the
complement of a tame simple closed curve, then K is a 3-dimensional K(7, 1). We
see that HYK; Zp) = 0 (i > 1); however, Whitehead has shown that if the curve is
knotted, then N(7w) = 2.

5. TRANSFORMATION GROUPS ON COMPACT ASPHERICAL MANIFOLDS

We are ready to state results concerning the action of a compact connected Lie
group on a compact connected manifold which is aspherical; that is, on a manifold
M" for which 7;(M™) =0 (i > 2).

THEOREM 5.1. If (G, M") denotes a compact Lie group acting effectively on a
compact, connected, aspherical manifold M™ for which x(M™) # 0, then G is finite.

Suppose G contains a circle group T!. Since x(M™) # 0, the circle group has a
nonvoid fixed point set F(T!) [3]. By Theorem 3.5, H?(F(T!); Z) ~ H®(M™; Z); but
this implies that F(Tl) = M™, This theorem generalizes the well-known result for
compact Riemann surfaces.

THEOREM 5.2. If (G, M®) denotes a compact connected Lie group acting effec-
tively on a compact, connected, orientable, aspherical manifold, then G is a toral
group acting freely.
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In view of Theorem 3.4 and the parenthetic remark preceding Lemma 3.1, no
element of finite order in G has a fixed point, and hence G acts freely. Gleason [5]
has shown that (G, M™) is a principal fibering of M™® in this case; hence, by Theorem
2.1, G is a toral group. This completes the proof.

As mentioned earlier, it has been shown that the only compact connected Lie
group which can operate transitively and effectively on a torus is a toral group [6].
Our Theorem 5.2 is one proof of the fact that the only compact aspherical manifolds
which appear as homogeneous spaces of compact connected Lie groups are the tori.
If (G, M™) is transitive on the aspherical manifold M®, we can certainly assume that
G is effective. However, G is a toral group acting freely and transitively on M™%, so
that M™ is homeomorphic to G. Obviously, several other proofs of this remark are
possible,

THEOREM 5.3. Let (T*, M™) denote a toral group acting effectively on a com-
pact, connected, aspherical manifold M™ with abelian fundamental group; then theve
exists a crvoss-section of all orbits, and M™ is homeomorphic to MD/TTXTT,

We have just seen that (T*, M™) defines a principal fibering of M™ over MY/ TYT.
It goes almost without saying that M™ has the homotopy type of an n-dimensional
torus. By Theorem 2.1,

i,: H1(TF; 2) — H)(M"; 2)
is a monomorphism. This implies (since M™ and T* are torsion-free) that
i*:; Hi(Mn»; Z) — Hi(T*T; Z)

is an epimorphism for i > 0. The Leray-Hirsch theorem [7] can be applied, since
this is a principal bundle, and we conclude that p*: H}(M?/T¥; Z) — H}(M™; Z) is a
monomorphism. The principal bundle [M®, M?/TZ¥, TT, p] is induced by a map [9,
p. 101]

£: MP/TT — K(ZT; 2),

where ZT is the r-fold direct sum of the integers with itself. It happens that
K(ZT; 2) is the classifying space of the toral group T*. The image of

f*: H2(K(Z*; 2); Z) — H2(M"/T%; Z)

is contained in the kernel of p*: Hi(M?/TT*; Z) — Hi(M®; Z), from which it follows
that f* is trivial for i > 0. This can only occur, of course, if f is inessential. It
now follows that the bundle [M® M¥T7Z, T*, p] induced over M®/TT by f must be a
product bundle.

6. EXAMPLES

In this section we shall give a few simple examples illustrating some of the re-
sults and remarks in this note. We shall describe a process for constructing the
type of fiber spaces discussed in Theorem 2.1.

Construction. Let K(w,, 1) and K(w,, 1) be two finite-dimensional Eilenberg-
MacLane spaces. Let G be any group which operates as a proper transformation
group on both K(m,, 1) and K(7,, 1). We form the diagonal transformation group
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(G, K(my, 1)xK(m,, 1))

by setting g(y,, ¥.) = (€Y., gY.) for g € G. The projection maps of K(m,, 1)xXK(m,, 1)
onto the factors gives a diagram

(K(my, 1)XK(7m,, 1))/G

/" \#
K(m,, 1)/G K(rz, 1)/G

where a and B8 are fiber maps with fiber K(7,, 1) and K(m,, 1), respectively.

The first large class of groups for which K(m, 1) can be chosen finite-dimen-
sional is, of course, the class of finitely generated free groups. Next is the class of
knot groups; that is, of the fundamental group of the complement of a tame simple
closed curve in the 3-sphere. In this case, K(7, 1) can be taken to be the comple-
ment of the knot. The simplest class of aspherical manifolds are the closed Riemann
surfaces of positive genus. Our Theorem 5.1 is, as mentioned earlier, a topological
extension of the classical result that a Riemann surface of genus greater than 1 has
no nontrivial 1-parameter group of analytic transformations.

Let M2 be a sphere with two handles. The group Z, acts freely on M?, and
since X(M2?/Z,) = -1, it follows that the involution reverses the orientation. If we
apply the construction to M?, we obtain an aspherical 4-manifold M?* fibered by M?
over M?/Z,. The involution (Z,, M®*X M?) preserves orientation; therefore M* is an
orientable manifold, and the fibering is nontrivial. A second curious fibering is ob-
tained as follows. Let 7 be the fundamental group of two circles with a point in
common. Let Y be the universal covering space. Then #/[7, 7] =~ Z + Z operates
freely on the 1-dimensional space Y/[w, 7]. The group Z + Z operates as a proper
group on the plane E2. If we apply the construction, we obtain a nontrivial fiber
bundle over the torus, with fiber Y/[7, 7], whose total space is a 3-dimensional
K(m, 1).

Finally we should point out the necessity of the hypothesis in Theorem 5.3 that
the fundamental group of the total space be abelian. If 9 € H3(T? Z) is the funda-
mental class of T2, then the map of T? into K(Z, 2) representing 8 induces a non-
trivial principal bundle [B3, T2, S!, p] over T2. Since HY(BS; Z)~ Z + Z, m,(B?) is
non-abelian, and therefore B3 is not homeomorphic to T3.
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