ON A THEOREM OF A. JAKIMOVSKI ON LINEAR TRANSFORMATIONS

Amram Meir

Dr. Jakimovski defined, in [1], the [F, d_n] transformations in the following way. Let $\{d_n\}$ $(n \ge 1)$ be a fixed sequence of complex numbers. Let the matrix (P_{mn}) be defined by $P_{00} = 1$, $P_{mn} = 0$ when m > n, and

$$\prod_{k=1}^{n} (x + d_k) = \sum_{m=0}^{n} P_{nm} x^{m} \qquad (0 \le m \le n = 1, 2, 3, \cdots).$$

Then the [F, d_n] transform $\{t_n\}$ of $\{s_n\}$ is defined by $t_0 = s_0$ and

$$t_n = \left(\prod_{k=1}^n (1+d_k)^{-1}\right) \sum_{m=0}^n P_{nm} s_m \qquad (n \ge 1).$$

The following result was proved in [1].

THEOREM. If $\{d_n\}$ $(d_n \neq 0, d_n \neq -1 \text{ for } n > 1)$ satisfies

(A)
$$\lim_{n\to\infty} \prod_{k=1}^{n} \left| 1 + \frac{1}{d_k} \right| = +\infty$$

and

(B)
$$\prod_{k=1}^{n} \frac{1+|d_k|}{|1+d_k|} \leq H < +\infty,$$

then the [F, d_n] transformation is regular. Condition (A) is also necessary.

The question of the necessity of condition (B) was left open by Dr. Jakimovski. I give here an example which proves that (B) is *not* necessary. Let

$$d_{2k-1} = \frac{1}{k+1}$$
; $d_{2k} = -\frac{1}{k+1}$ (k = 1, 2, ...).

Then, as $N \to \infty$,

$$\frac{\prod_{k=1}^{2N} \frac{1+|d_k|}{|1+d_k|} = \prod_{k=1}^{2N+1} \frac{1+|d_k|}{|1+d_k|} = \prod_{k=1}^{N} \frac{1+\frac{1}{k+1}}{1-\frac{1}{k+1}} = \prod_{k=1}^{N} \frac{k+2}{k} = (N+1)(N+2)/2 \to +\infty ,$$

and therefore condition (B) is not fulfilled. Let $c_{00} = 1$ and

Received May 14, 1959.

$$c_{nm} = \left(\prod_{k=1}^{n} (1 + d_k)^{-1}\right) P_{nm}$$
 for $n = 1, 2, \dots; m = 0, 1, \dots$

The conditions for regularity of the transformation are

$$\lim_{n\to\infty}\sum_{m=0}^{n}c_{nm}=1$$

(
$$\beta$$
)
$$\lim_{n\to\infty} c_{nm} = 0 \quad (m = 0, 1, \dots),$$

(
$$\gamma$$
)
$$\sum_{m=0}^{n} |c_{nm}| < H < +\infty \quad (n = 0, 1, \cdots).$$

The definition implies that (α) holds. It is easy to show that $P_{nn} = 1$ and that, for $n = 1, 2, \dots$ and $m = 0, 1, 2, \dots$,

(1)
$$\begin{cases} P_{n+1,m} = P_{n,m-1} + d_{n+1} P_{nm}, \\ P_{nm} = \sum_{1 \leq j_1 < \dots < j_{n-m} \leq n} d_{j_1} \dots d_{j_{n-m}}. \end{cases}$$

Since by definition $d_{2k} = -d_{2k-1}$, we see easily that for $v=0, 1, \cdots$ and $u=0, 1, \cdots$, $P_{2v,2u+1} = 0$ and therefore

(2)
$$c_{2v,2u+1} = 0$$
.

From (1) and (2) we obtain

$$c_{2v+1,2u+1} = \frac{1}{1+d_{2v+1}}c_{2v,2u},$$

$$c_{2v+1,2u} = \frac{d_{2v+1}}{1+d_{2v+1}}c_{2v,2u}.$$

Since $d_{2v+1} > 0$, it follows that

(3)
$$|c_{2v+1,2u+1}| + |c_{2v+1,2u}| = |c_{2v,2u}|$$

But

$$\begin{split} \left| c_{2v,2u} \right| &= \frac{\left| P_{2v,2u} \right|}{\displaystyle \prod_{k=1}^{v} (1-(k+1)^{-2})} = \frac{\sum_{2 \leq j_1 < j_2 < \dots < j_{v-u} \leq v+1} j_1^{-2} j_2^{-2} \dots j_{v-u}^{-2}}{\displaystyle \prod_{k=1}^{v} (1-(k+1)^{-2})} \\ &< \left(\binom{v}{u} \right) 2^{u-v} \prod_{k=2}^{v+1} (1-k^{-2})^{-1} . \end{split}$$

This implies that

$$\lim_{v\to\infty} |c_{2v,2u}| = 0$$
 (u = 0, 1, ...).

By (2) and (3) we see that (β) holds. Now, from (2) and (3), it follows that

(4)
$$\sum_{m=0}^{2v+1} |c_{2v+1,m}| = \sum_{m=0}^{2v} |c_{2v,m}| = \sum_{u=0}^{v} |c_{2v,2u}|$$

and

$$\begin{split} \sum_{\mathbf{u}=0}^{\mathbf{v}} \left| \, \mathbf{c}_{2\mathbf{v},2\mathbf{u}} \right| &= \left(\prod_{\mathbf{k}=2}^{\mathbf{v}+1} (1-\mathbf{k}^{-2})^{-1} \right) \cdot \sum_{\mathbf{u}=0}^{\mathbf{v}} \sum_{2 \leq \mathbf{j}_{1} < \cdots < \mathbf{j}_{\mathbf{v}-\mathbf{u}} \leq \mathbf{v}+1} \, \mathbf{j}_{1}^{-2} \, \mathbf{j}_{2}^{-2} \cdots \, \mathbf{j}_{\mathbf{v}-\mathbf{u}}^{-2} \\ &\leq \left(\prod_{\mathbf{k}=2}^{\mathbf{v}+1} (1-\mathbf{k}^{-2})^{-1} \right) \cdot \left(\prod_{\mathbf{k}=2}^{\mathbf{v}+1} (1+\mathbf{k}^{-2}) \right) < \mathbf{H} < +\infty \,, \end{split}$$

where H does not depend on v. By (4) we see that (γ) is true.

REFERENCE

1. A. Jakimovski, A generalization of the Lototsky method of summability, Michigan Math. J. 6 (1959), 277-290.

The Hebrew University Jerusalem, Israel