THE POSITIVITY SETS OF THE SOLUTIONS OF A
TRANSPORT EQUATION

Z. A. Melzak

1. Let
(1) Df(x, t) = 0, f(x, 0) = g(x) > 0 (x, t>0)

be an initial-value problem whose operator D and initial function g(x) are such that
the following properties hold:

(i) there exists a unique continuous solution f(x, t) valid for x,t> 0,
(ii) f(x, t) is analytic in t for each x,
(iii) f(x, ) > 0 (> 0) if g(x)>0 (>0).

Let P ={x| g(x) > 0} and Z ={x| g(x) = 0}, and define

Fi(x, 0) ™f(x, 0) _
z, ={ x| 52 -0 (k=0,1, -, n- 1), THED S0} =12,

z,=%- UzZ,.
1

Z, is called the n-th positivity set, and Z,, is called the residual set; the totality
of these gives some information about the behaviour of f(x, t), especially for small t.
For example, f(x, t) > 0 for t> 0 if andonly if x € ZUP - Z,; f(x, t) = 0 for all t
if and only if x € Z,; and over Z,, f(x, t) = O(t") for small t.

In this note there will be considered an example of a nonlinear integrodifferential
operator D for which the sets Z  can be completely described in terms of Z and P
alone.

2. The equation

of (x t) _

@ =35 16, 0t v, 096, x- v ey - 16,0 165, D0, )0y

has been considered, as a special case, in [1]. It satisfies the above conditions (i),
(ii).and (iii) under the following hypotheses:

(H,) f(x, 0) is a continuous, nonnegative, integrable and uniformly bounded function
for x> 0, and

(H,) (%, y) = ¢(y, X) is a continuous, nonnegative and uniformly bounded function
for x,y > 0.
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o0
Let £(x, 0) < B, ¢(x, y) <A, S f(x, 0)dx = N and m = 3AN/2. Then, for
- 0
t < 1/m, the following estimates are valid, by Section 3 of [1]:

3) |a"(x, t) < Bn! m" , S’m 7 (x, t) dx < Nn! m® -
| o |~ @-mortt Yo | o ~ @ - my*t?

These will be needed iater on.

Let X and Y be arbitrary sets of nonnegative real numbers. Then the vector
sum X + Y is defined by

X+Y={zlz=x+y (xe X, ye )},

the operation of vector addition of sets is therefore commutative and associative.
Define now X! = X, xotloxny X,and let Z and P be as before. The theorem of
this note can now be stated as follows.

THEOREM 1. Let ¢(x, y) > 0. Then the positivity sets of the solutions £(x, t) of
equation (2) are given by

A =zn(pn+1 -Dpi).
1

3. The proof of Theorem 1 is based on a lemma which describes the form of the
n-th derivative 9"f(x, t)/2t". Before the statement of the lemma, some special nota-
tion will be introduced. Let

tre=g{ ty, 08 -y, Doy ey, T= T, Do vy

Then (2) may be written as

af
— * -

The operation* has the usual properties of a convolution, and expressions like (f*)»
and II7*(f g;) can be formed in the usual manner, the g; being continuous and inte-

grable functions of x and t. K in addition g; # 0, then the hypothesis ¢(x, y) > 0 of
Theorem 1 implies the equivalence of the following three statements:

(4) )™=0, xg¢P JI%g)-=o0.
1

The first two of these are always equivalent.
LEMMA 1. Witk the notlation above, the k-th devivative is of the form
k
(5) 9% = a, ()X 4 8,5+ £ Gy,
ot j=2



POSITIVITY SETS OF SOLUTIONS OF A TRANSPORT EQUATION 333

whevre
)
ap=k!,  Syy=hy J] gy + 2 sum of a finite number of similar terms,
i=1

and gy ;> hkj and Gy are functions of X and t.

For k = 1, (5) is the equation (2) itself. Call (f*¥)*!, s, and ka terms of type
Ay, By and C,, respectively. Assume that (5) holds for k = 1, 2, ---, n. Differentiat-
ing (5) with respect to t, for k = n, one obtains formally

n
© Yo R JEZ '+ 3Gt I

By an induction on k and by the estimates (3), this result may be justified: all terms
are defined, and the necessary conditions of differentiability and integrability hold.
The convolutions are differentiated by the ordinary Leibniz product rule. Substituting
f*f - ff for 9f/0t, where necessary, one finds that the last two terms on the right
are of type C,,;; and B, ,,. The second term is a sum of a finite number of expres-
sions of type

J

oh of gni1) *
SR g0 or J—atﬂ"l—n (€ g1 »
k=1

both of which are of type B, . ;. Finally, the first term may be written as

*\n+1
ana—(%i)—— = (n+ 1) a, (¥ + type B, . term.

This shows that a,, = n! and that (5) is valid for all k.

4. The proof of Theorem 1 now follows at once. Let x € Z,; then x € Z, so that
of(x, 0)/ot = £ *f. Since x ¢ P2, it follows from (4) that 9f(x, 0)/dt = 0. Similarly it
follows from (4) and (5) that

o¥f(x, 0) _

e =0 (k=1,2,,n-1).

But x € P+l and therefore

n
B 0 _ py gyt > 0,
ot
In exactly the same way one shows that if 9kf(x, 0)/otk =0 for k=0, 1, *-, n- 1 but
o"f(x, 0)/ot™ > 0, then x € Z,,.

The following corollary of Theorem 1 and the conditions (i), (ii) and (iii) is ob-
vious: f(x, t) > 0 for t> 0 and for all x if and only if Z C Us *pn,

It appears to be an interesting problem to find other equations obeying the condi-
tions (i), (ii) and (iii) and to determine their positivity sets.
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