MINKOWSKI’S AND RELATED PROBLEMS FOR
CONVEX SURFACES WITH BOUNDARIES

Herbert Busemann

1. INTRODUCTION

The theory of convex bodies establishes uniqueness for general closed convex
hypersurfaces in E", when an elementary symmetric function R; R +-- R+ .-
(1 <m < n - 1) of the principal radii of curvature, or a suitable generalization of
it in terms of set functions, is given as function of the normal. The method was
initiated by Minkowski [8]. The general problem was solved independently by A. D.
Alexandrov [1] and Fenchel and Jessen [5]. A convenient source in book form is
provided by [3]. For surfaces of class C2? in E2 and given R, R, < «» Chern [4] gave
a proof avoiding the Brunn-Minkowski Theory.

Also without using this theory, Hsiung [6, 7] proves the corresponding uniqueness
theorems for smooth surfaces of positive curvature with a boundary in the cases:
general n, m = 1, and n = 3, m = 2, following Chern’s method in the latter case.

(Hsiung’s historical remarks regarding the other methods cannot pass unchal-
lenged. The decisive papers of Alexandrov, Fenchel and Jessen are not mentioned at
all. Instead we find: uniqueness for closed surfaces “. . . was established by Min-
kowski and proved several decades later by Lewy for analytic surfaces ... .” Lewy,
as well as other cited authors, are concerned with the existence of smooth surfaces
with smooth data and not with uniqueness.)

It is the purpose of this note to show that the theory of convex bodies is applicable
to suvfaces with boundaries, just because it is not restricted to smooth surfaces. In
Theorem I we establish uniqueness under very wide conditions for surfaces in E?
with a given boundary and any given (generalized) RjR,-** R, + ***. The completely
general case would have required a modification of the theory, which will not be
discussed here.

In addition we give a uniqueness theovem and an existence theovem for convex
caps (Theorems II and III). A cap is a convex hypersurface with a closed hyperplane
boundary, such that the normal projection of the surface on the plane of the boundary
lies inside or on the latter. The interest in caps derives from their central role in
the investigations of Pogorelov; see [3].

2. THE AREA FUNCTIONS

We use the term convex (hyper)surface as in [3] for a connected relative open
subset K of a complete convex hypersurface K* in E™ A normal to K is the unit
normal to a supporting plane of K pointing into the exterior of the convex set
bounded by K*. There is an ambiguity only in the trivial case, disregarded here, of
a non-closed K lying in a hyperplane. The spherical image of K consists of the
endpoints on the unit sphere Z of the unit vectors beginning at the center of £ and
parallel to normals of K.
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Since the case where the boundary has several components requires merely more
verbiage but no new ideas, we consider, besides certain closed surfaces, only sur-
faces K homeomorphic to E"-! whose boundaries B are homeomorphic to S™-2,

If K is of class C? and has positive curvature, then its principal radii of curva-
ture R}, ---, Rn-1 are defined and finite. {R1 «-Rm} (1< m<n - 1) denotes the
elementary symmetric function Rj R, +** R, + -+ of the R; of which R;---Rp, is
one summand. Our first goal is a general form of the following statement:

I'. Let K, K' be two convex hypersurfaces of class C2? with positive Gauss
curvature, with the same sphevical image and the same boundary B of class C. If
Sfor some fixed m the function {Rl Rm} has the same value at points of K and
K' with parallel normals, then K = K'.

Consider a closed convex hypersurface K*, and on K* a set B homeomorphic to
Sn-2, Let B decompose K¥* into the sets K and C° homeomorphic to E™-1 put
C = C°U B, and assume that the spherical images Xi and X of K and C are dis-
joint.

We follow the method of [5], found also in [3, Sections 8, 9]. For each m
(1 <m< n- 1), an area function a.(K*, X) is defined for all Borel sets X on =.
We agree to consider only Borel sets. For K* of class C2? with positive curvature,

a, (K* X) = S {R;---R_} d=,.
X

For X C Z, we define
anK, X) =a,(K* XNXy, ay(C,X)=a,(K* XNX:).
Because of XN X =0 and XgUX = Z, we have
(1) am (K, X) + a,,(C, X) = a,,(K*, X).

From the definition of a,,(K*, X) in [5] or [3], we deduce that the functions a,,(K, X)
and ar&(C, X) are independent of K* in this sense: If K lies on a second convex sur-
face K; = KUC; with XN XC1 = 0, then a (K, X) is the same function evaluated for

K:‘ as for K*. The same is true for a_(C, X) if Kf =K; UC, XKlnXC =0 and
Xk = XK1’ because then X is the same for K* and K¥.

In particular, if no supporting plane of K contains a point of B, then the spheri-
cal images of K and C will be disjoint, no matter in which surface we imbed K. In
that case, a, (K, X) depends therefore only on K, and a_,(C, X) will, with the above
notation, be the same function for K and any other K, which does not have support-
ing planes containing points of B, provided X = XKl .

We call a (K, X) the m-th area function of K. For K of class C? and with
positive curvature, we have

) \ a_(K, X) = S'X ARy R} ez,
NXk
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and for general K we see from [ 5] that a (K, X) can be obtained by approximation
of K* with smooth convex surfaces as a limit of integrals (2).

3. UNIQUENESS FOR SURFACES WITH A GIVEN BOUNDARY

With the help of a,,(K, X) we can now formulate our generalization of I':

THEOREM 1. Let K, K' be convex hypersurfaces in En, homeomorphic to EP-1
and with the same boundary B homeomovphic to SP-2, such that the supporting
planes of K and K' do not contain points of B. If K and K' have the same sphevical
image and the same m-th avea function (m fixed), then K = K'.

The assumption on the area function means that
a, (K, X) =a_(K', X) for every X C Z.

If B lies in a hyperplane H, then it is a closed convex surface in H. If K co-
incides with the convex domain J bounded by B in H, then its spherical image con-
sists of one point. Hence that of K' consists of the same point, so that K' lies in H
and also coincides with J. For B C H but K # J, the surfaces K, K' lie on the same
side of H because they have the same spherical image. We denote by D and D' the
closed convex surfaces obtained from K and K' by adding B and J.

We define D, D' similarly when B does not lie in a hyperplane, namely as the
boundaries of the convex closures of KUB and K'UB. Then KUB c D, because any
subset of a convex surface lies on the boundary of its own convex closure. Put
C° =D - (KU B). A supporting plane Hp of D at a point p of C? is a supporting
plane of B. For Hpn (KU B) contains a point q (see [2, p. 6]), and the segment from
p to q lies on Hp and contains a point of B; actually q € B because of our hypothesis
on the supporting planes of K.

Thus C° is one of the two sets C° C9 homeomorphic to En-1 into which B de-
composes the boundary of its own convex closure. By the same argument, D' is
either K' UB UC® or K'UB UCY. Since K and K' have the same spherical image,
D'=K'UB UC®°.

By (1) and the ensuing discussion, the surfaces D and D' have the same m-th
area function

a,(D, X)=a_ (K, X)+a,(C,X)=a,(K' X)+a,(C, X)=a_(D', X).

Since D and D' do not lie in hyperplanes, we conclude from the results of [1] or
[5] (see also [3, p. 70]) that D' originates from D by a translation. But D and D'
have C°UB in common; hence K = K'.

4. UNIQUENESS OF CAPS

The applicability of the theory of convex bodies to Theorem I rested essentially
on the fact that this theory is not restricted to smooth surfaces. We give a second
application of this fact.

A convex cap is a convex surface K homeomorphic to E»- 1 whose boundary B
is homeomorphic to S™- -2 and lies in a hyperplane H, and whose normal projection
on H falls on the domain J bounded by B, or on B. The cap is spatial when different
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from J, and proper when its projection is J. Certain, but not all, proper caps
satisfy the hypothesis of Theorem I, so that their m-th area functions am(K, X) are
defined. Whether a,(K, X) determines a spatial K among all caps up to transla-
tions is not known and seems doubtful except for m = n - 1, but we shall define new
functions a (K, x), with a%_;(K, X) = a,,_; (K, X) for proper K, which determine K.

The restriction to spatial caps is essential, since caps in parallel hyperplanes
and with the same area have the same (n - 1)-st area function. We consider im-
proper caps because we do not only aim at a uniqueness theorem, but also at an
existence theorem for given ag_l, and there does not seem to exist a simple way of

distinguishing general proper caps from certain improper ones in terms of ag_l.

With the previous notations, let K be a spatial cap and K, its image under re-
flection in H. Then K, = KUBUK, is a closed convex surface Denote the unit
normal to H towards the side of K by v, and by E , 2, G, respectively the sub-
sets x-v>0, x-v<0, x.-v=0 of Z. We define

(3) a’ (K, X) =a_(K,, Z}nX) + a, (K,, G,NX)/2.
Then

ad (K, X) - a_ (K,, Z;NX) + a, (K,, G,N X)/2
\and
(4 a?n(K, X) + arg(Kl, X) =a_ (K, X).

In order to discuss the meaning of ag_l, denote by Z the cylinder formed by the
lines normal to H at the points of B. Then (see [5])

(5) a,_;(K,, G,) = area ZN K,
For proper caps, ZND = B, hence a_,_;(K,, G, =0
Also, Et:) Xk for proper K, hence
a, K, X)=a,(K,, Xgn X) <a_(K,, ZInX).
But
+ =
I(K*, z -XK) =0,

because this number represents the Minkowski area (see [5]) of the points of K, with
normals in E - Xk, and all these points lie in B. Thus

ag_l(K, X) = a,_; (K, X) for proper caps.

The definition (3) of a%_;(K, X) as area function for improper caps is also en-
tirely natural in view of (5) but (3) involves for m < n - 1 the behavior of K at the
boundary in a non-obvious way. Our uniqueness theorem for caps is:

THEOREM 1. If two spatial caps K, K' have the same m-th area function
(a9 (K, X) = a9 (K', X) for all X c Z), then K' originates from K by a translation.

We define Kj, K, for K' in the same way as K, was defined for K. Then, for
any set X C Z and its image X, under reflection in x-v =0,
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a (K, X) = a (K, Xl), a (K, X) = a (K}, X)),
therefore also
2 (K1, X) = a,n(K}, X),
and by (4),
a (K,,X)=a_ (K, X) forall XcCZ;

hence it follows from the uniqueness theorem in[1] and [5] (see also [3, p. 70]), that
K originates from K, by a translation. The planes H and H' containing the bound-
arles of K and K' and also the sides of H, H' containing K and K' correspond
under the translation, because the 1mages of Z+ on K, and K correspond. More-
over, a® (&, X) >0 for some X c Z}, ad (K, X) =0 for all X C Z,, and similarly

for K', which defines the sides of H and H' on which K and K' lie.

As an application we observe that for n = 3 this theorem and the intrinsicness of
the extrinsic curvature (see [3, P. 1071) imply that a spherical cap is, up to motions,
determined by its intrinsic metric. This is a special case of a general theorem of
Pogorelov (for references see [3, p. 166]). The same holds for spherical caps in E®
for odd n > 3 within the class of those smooth caps for which the intrinsicness of
the Gauss-curvature R 1 R 1 has been shown.

5. EXISTENCE OF CAPS WITH GIVEN al_;(X, X)

Any closed convex surface K, satisfies
(6) S‘Zui a Ky, dZ,) =0 i=1, -, n).

For m <n - 1, it is known that the condition
S‘ y;a(dz,) =0
2

is not sufficient for a non-negative completely additive set function a(X) on Z to be
the m-th area function of a convex surface; but necessary and sufficient conditions
have not been found (see[3, Section 9]). For ag_l we have the following result:

THEOREM Ill. Let a(X) be a non-negative completely additive set function de-
fined on all Borel sets X on Z satisfying the conditions

(a) a(X) = 0, when X lies inx, <0,

(b) u;a(dZ,) = 0 for j <n,
§u

(c) a(Gy) < a(Z) for all u

(where G denotes, of course, the intersection of = with u-x = 0).
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Then there exists, up to translations, exactly one spatial convex cap K with
ag_l(K, X) = a(X) for all Bovel sets X C Z, and its boundary lies in a plane
X, = const.

The condition (c) is necessary to prevent degeneracy (compare [3, p. 63]). De-
note by X, the image of the set X CZ under reflection in the hyperplane H: x = 0.
We define a new set function F(X) by

F(X) = a(X) + a(X,),

then F(X) = F(X,), and F(X) satisfies the conditions

{ wrazy=0 (=1, n.
Z

If u* = (1{1, ***, Up_1, - Uy), then for any u

F(Guw) = a(Gu) + a(G_,) < 2a(Z) = F(2);

hence there exists a closed convex surface K, with
an 1K, X) = F(X) forall Xc Z

(see[1], [5] and[3, p. 64]).

We claim that K, is symmetric with respect to a plane H' parallel to H. For if
K,, is the image of K, under reflection in H, then

an.1(Ky, X)) = an—l(K*’ X) =a, 1K, Xy,

so that K,, originates from K, by a translation, whence the assertion follows.

Thus H' decomposes K, into two spatial caps K, K; symmetric to H'. By con-
struction, when v = (0, +--, 0, 1) is a normal of K,

al (K, X)=aX) for Xcz,
al (K, X)=0=a(X) for XCZ,,
and also
al (K, X) = FX)/2 = a(X) for XcC Gy,
because F(X) has for X c Gy the following geometric meaning: consider the set Y
of those points in B = K, N H' where the normal to B in H' falls in X, and let Z be

the cylindrical set consisting of the lines normal to H at points of Y. Then F(X) is
the area of the set ZNK,.

The last three equations and the additivity of ag_ 1(K, X) prove that
al (K, X)=a(X) for XcZ.

The uniqueness, up to translations, is contained in Theorem II.
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The question arises whether the cap K obtained in this way is smooth when the
data are smooth. Nothing is known for n > 3. For n =3 we can say the following:
For any Borel subset X of the connected open subset Y of Z*V", let

a) (K, X) = S'X f(u) dz,,

where f(u) is defined on Y and is positive and continuous. Then there is exactly one
point x € K with normal u, so that x may be considered as function x(u) on Y.
Moreover, f~}(u) is the Gauss curvature of K at x if defined as the limit of the ratio
of the area of a set on Z shrinking to u and the area of the corresponding set on K.
(This does not imply that the part of K corresponding to Y is of class C2, see [3,
p. 29]).

A theorem of Pogorelov [9], with an improvement due to Nirenberg (see [3, p. 36])
implies: If f(u) = f(u;, up, (1 - u% - u%)l/2 is on Y positive and of class C™ (m > 2),
then the components x;(u,, u,, (1 - u% - u%) 1/ 2) of x(u) are (all as functions of u,, u,)
at least of class C™%! (analytic with ). The following special case merits being
formulated explicitly:

If f(u;, up, uy) (Euf = 1) is positive and continuous for uz; > 0, vanishes for
u; < 0, and satisfies

S. w; f(wdZ, =0 i=1,2).
z

then there is, up to translations, only one proper cap K with

a,(K, X) = ay(K, X) = S‘X f(u) d=, .

The boundary of K lies in a plane parallel to x; = 0, and f~*(u) is the Gauss curva-
ture of K defined as area limit.

The cap is of class C™t! (m > 2), or analytic, if f(u;, u,, (1 - u% - ug)l/z) is
of class C™ or analytic.

All assertions have been proved before, except that K is eroper when f(u) is
merely positive and continuous. This follows from a theorem of Alexandrov (see [3,
p. 34, Theorem 5.4]).
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