TRANSIENT FLOWS IN NETWORKS
David Gale

1. INTRODUCTION

Ford and Fulkerson [1] have introduced the notion of dynamic flows in networks.
A dynamic network consists of a graph I" to each edge e of which corresponds a non-
negative integer y(e), called the capacity of the edge, and a second nonnegative inte-
ger 7(e), called the fransit time of the edge. In terms of transportation networks, the
capacity y is to be thought of as giving an upper bound to the amount that can be
shipped along an edge e, while the transit time 7 specifies how long it takes a ship-
ment to traverse this edge. In this framework, Ford and Fulkerson have considered
the following problem: For a dynamic network I' with two distinguished terminals s
and s' (called the source and the sink, respectively), to determine the maximum
amount pu; that can be shipped from s to s' in k time periods. In the work referred
to, the authors describe an ingenious algorithm for obtaining uj) for each integer k.
More precisely, they show, for each integer k, how to obtain a flow ¢y (to be thought
of as a shipping schedule) that achieves the desired shipment p, from s to s'.

Concerning the solution of Ford and Fulkerson, the following observation may be
made. In order to achieve the maximum numbers puj, @2, *-+, (x, the authors con-
struct a sequence of flows ¢;, ¢, ***, ¢. It would be computationally advantageous
if it turned out that ¢, is a “continuation” of 6, and, in general, ¢;;; a continuation
of ¢;. Put another way, one might hope that the flow ¢ has the property that for
each time i < k the amount already shipped into s' is the maximum p;. In this
case the single flow ¢, would provide a solution to the maximum problem, not only
for k time periods, but also for any smaller number of periods. However, the flows
obtained by the authors do not have this desirable property; indeed, it is not clear
from their work that such universal maximal flows exist. It is our purpose here to
show that they exist, not only for the case treated by Ford and Fulkerson, but also
for the considerably more general case in which the capacities y and transit times
7 may vary with time.

2. A LEMMA ON STATIC NETWORK FLOWS

The result needed for proving the main theorem of this paper (see Section 3) is
the Feasibility Theorem obtained by the author in[2]. We shall here record the
definitions needed for a statement of that result. For motivation and interpretation
of these definitions, the reader is referred to [2].

A network with a source is a triple [X, s; y], where X is a finite set of elements
X, Yy, ***, called nodes; s is a distinguished node of X, called the source; and v, the
capacity of the network, is a function on pairs (x, y) of nodes, such that y(x, y) is a
nonnegative integer or plus infinity. .

A flow ¢ on X is a function from ordered pairs (x, y) to the integers satisfying
the conditions
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¢(x, y) + ¢(y, x) =0  (skew-symmetry),
o(x, y) <v(x,y) (feasibility)
(the skew-symmetry is simply the usual convention that the flow from x to y is the
negative of the flow from y to x).
A demand & is a function from X - s to nonnegative integers. The demand 90 is

called feasible if there exists a flow ¢ such that

5(y) < 27 ¢(x,y)
x€X
for all y in X - s.
The main result of [2] states the following:

FEASIBILITY THEOREM. The demand 0 is feaszble zf and only if, for every
subset S of X - s, 0 satisfies the velation

(1) oim< 2 vy
\ YES x€X-S
YES

We shall need a 51mple corollary of th1s theorem.

LEMMA 1. Let yi, **+, ¥, be distinct nodes of X - s, and let 8y, ++, 0, be
feasible demands such that .

0;(ys) = 13 < 8541 (54)) = Bipy
for i<n. Let b be the demand such that
6(yy) = 1y,
5(Yi)=ﬂ-i- Mi_1 for i>1,
6(y) =0 otherwise.

Then the demand 0 is feasible.

Proof. Let S be any subset of X - s, and let k be the largest index for which y
belongs to S. Then

(2) 22 8(y) < 25 8(y;) = pys
V€S i<k

but since § is feasible, it follows from (1) that

(3) =0 .(n) < Z} (V< 2 o y).
xX€X -5
yeES

Combining (2) and (3), we see that & satisfies (1) and is therefore feasible.
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3. THE TRANSIENT-FLOW THEOREM

As mentioned in the Introduction, we intend to consider a generalization of the
Ford-Fulkerson dynamic network in which capacities and transit times are allowed
to vary with time. This generalization would seem to be useful in terms of applica-
tions. In rail networks, for example, it may happen that trains travel on some routes
only on certain days of the week, so that the capacity of such a route is sharply in-
creased on these occasions. Likewise, certain routes may sometimes be closed for
periodic inspection or repair. We shall therefore give a slightly different formula-
tion of a dynamic network from that of [1].

A two-terminal network [X, s, s'; y] is a network, in the sense of the preceding
section, having an additional distinguished node s’', called the sink, For brevity, we
shall henceforth denote this network simply by X.

A maximal demand 6 on such a network is a feasible demand 6 for which the
value 8(s') is as large as possible.

Now, let X be the set of nodes of a two-terminal network. We define X, to con-
sist of all pairs (x, i), where x isin X and i < n is a nonnegative integer. For con-
venience, we denote such a pair by x;.

An n-stage two-tevminal network is a network [X,, sg, s5; v], where, as before,
y is a function on pairs (x;, yJ) into nonnegative integers or infinity, whlch must also
satisfy the condition

(4) v(s;, s;,1) = ¥(sy, s5,) = .

For brevity, we henceforth denote this network by X,,.

An explanatory word concerning this definition is in order. The number y(x;, yj)
gives an upper bound to the amount that can be shipped from node x at time i to
arrive at node y at time j. In view of this interpretation, one might expect the con-
dition y(x;, y;) = 0 for j <i (the irreversibility of time). However, since our argu-
ment is independent of this condition, there is no reason to impose 1t Condition (4)
above states that goods can always be held over for any number of time periods at
the source or sink. Notice that, in this formulation, no explicit mention is made of
transit times. They are, however, implicitly included in the definition. Thus if edge
(x, y) has capacity 10 and transit time 3, this would be indicated by the relation

10 for j=i+ 3,

v(xi, y3) =
0 otherwise.

For the network X,, the notions of flow, demand, feasible demand, and maximal
demand are defined exactly as before.

Finally, for each integer k < n, we define X), the k-stage subnetwork of X, to
be the two-terminal network [Xk, S0s Sk vl, where y is the same function as that
for X, except that it is restricted to pairs (x;, yJ) with i, j <k.

LEMMA 2. Let by be a maximal demand on Xy, and let u, = 6, (sy). Then
Ky < [T for all k < n.

Proof. Let ¢, be the maximal flow such that
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e = Oy (s)

Now define a new demand 0' as follows:
68'(x;) = 0, (x)) for x; € X,, X; + 8y,

8'(s},, ) = hye

6'(x) =0 otherwise.
This demand is feasible, since it is satisfied by choosing the flow to be ¢', where
¢'(x;, ¥;) = #(x;,y;) for i, j <Kk,
O (Ser Siepy) = =8 (810 ) = By
¢'(x;, yj) =0  otherwise.

By definition of a maximal demand, the conclusion of the lemma follows.

THEOREM. Let 6, +++, 6,, be maximal demands on Xy, -+, X, and let
ki = 0i(sj). Then the demand O, wheve 0(s)) = 1y, 0(s;) = g -~ 31 for i> 1,
and 6(x) = 0 otherwise, is feasible.

In view of Lemma 2, the theorem is simply a special case of Lemma 1, and the
proof is therefore immediate.

4. REMARKS

(a) The problem of a universal maximal flow makes sense for the case where the
network contains several sources sj, -, sp. The analogous theorem is true in this
case; namely, there exists a dynamic flow from the sources sy, *:+, s, into s' that
is maximal at all times i1 < n. Infact, this case is easily reduced to the case of a
single source, by the standard device of introducing a new source s, into the network
and defining the capacities y(sy, s;) to be infinite, and of transit time 1.

(b) One might hope that the theorem on universal maximal flows extends to the
case where there is more than one sink. A natural generalization: let 6y, -+, 6, be
feasible demands on X, ***, X, such that 6;(x;) < 6;,,(x;;;) for all x; can one then
prove the feasibility of the demand 0 defined by these functions? The defining equa-
tions are

G(Xl) = 51 (Xl) ’
6(x;) = 9;(x;) - 6, ;(x,_;) for i>1.
The simple example illustrated in Figure 1 shows that this is not the case. Here
the edges (s, x) and (%, y) both have capacities and transit times equal to 1. The
graph of X, is shown in Figure 2. Now define 6, and 6, as follows:

61(}(1) = 1, 51(Y1) = O’

62(X1) = 0’ Gz(yl) =0, 52(}{2) =1, 52(372) =1.
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Clearly, both 6, and 0, are feasible, but this is not the case for the demand & de-
fined by

5(X1) =1, 6(}'1) =0,
6(x,) =0, O(y)=1,

as the reader will see on referring to Figure 2.

(c) For the case in which capacities are independent of time, Ford and Fulker-
son showed that a dynamic maximal flow can be achieved that does not involve “hold-
overs;” in our notation, the maximal flow ¢, has the property that ¢(xj, x;+1) =0
for all x; other than s and s'. In view of their result, the same thing is true for the
case of universal maximal flows when capacities are constant with time. Namely,
one simply defines the capacity y so that y(xj, x;+1) = 0 for x # s, s', and the proof
is exactly as before.

(d) For the case of constant capacities, Ford and Fulkerson have given a simple
computational method for finding maximal flows. The proof given here does not lead
to such a procedure. We suspect that some mild modification of the Ford-Fulkerson
algorithm will actually allow the calculation of universal maximal flows. For the
present, however, this is pure conjecture.
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