ON THE SHEETED STRUCTURE OF COMPACT LOCALLY
AFFINE SPACES

Louis Auslander

INTRODUCTION

Let M™ be an n-dimensional, compact, locally affine space; that is, let M»
carry a complete affine connection with curvature and torsion tensors equal to zero.
It is well known (see [1]), that any locally affine space can be realized in the follow-
ing manner. Let I' be the fundamental group of M™, Then the affine connection on
M™ determines an imbedding of T" in the group A(n) of affine transformations of the
n-dimensional affine space AR, Further, the orbit space A™/T" is homeomorphic to
M-, Let T denote the subgroup of I' consisting of all pure translations. Then T is
a free abelian group on a finite number of generators. Let h(I") = T'/T. Then h(I")
is called the holonomy group of I'. The purpose of this paper is to prove the follow-
ing three theorems:

THEOREM 1. Let T be a free abelian group on s genevators (s >1). Assume
also that h(T’) contains no elements of finite ordev. Then M™ is a fibey bundle over
a compact locally affine space X with the s-dimensional torus as fiber. Further,
the fundamental group of X is isomorphic to h(T').

THEOREM 2. Let T be a free abelian gvoup on s genevators (s> 1). Then
there exists a mapping p: M— X, wheve X is a compact space (not necessarily a
manifold) with the following properties:

I. For all x € X, p~i(x) is a compact, s-dimensional manifold which can be
given a Riemann metvic with zevo cuvvatuve and torsion.

II. The mapping p satisfies the hypothesis requived for applying the Fary spec-
tral sequence (see [2]).

In[3], Zassenhaus defined the radical R of a discrete matrix group I" as the
maximal solvable normal subgroup, and he proved that R is unique.

THEOREM 3. Let T be the fundamental gvoup of a compact locally affine space
M, and assume that T' has a nontrivial radical. Then there exists a mapping
p: M—X, wherve X is a compact space (not necessarily a manifold) and the pre-
image of each point of X under p is a compact manifold with a torus as covering
space.

The paper concludes with an example of a locally affine manifold which satisfies
the hypothesis of Theorem 2, but not the hypothesis of Theorem 1.
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1. GENERAL CONSIDERATIONS

Let t;, --+, t; be a basis for T. Then through each point of A™ the basis
ty, **, tg determines a unique s-dimensional plane ES, and all the planes thus de-
termined are parallel. Let & denote this family of parallel planes. Then € deter-
mines a projection py: A% — An-sS; and I' may be considered as acting on A™-S, For,
if y € T, then yt;y-1=3 ajjtj (i, j =1, -+, s). Hence for each E® in G, T' maps ES
either onto itself or onto another element of &. We denote the action of I' on An-s
by P,(T'). Then P4(I') C A(n - s). We choose a coordinate system in A™ in such a
way that the first s coordinates span ES, and we represent the points of A2 by col-
umn vectors. In terms of homogeneous coordinates, every element of I' has a ma-
trix representation of the form

A X t)\ .

0 B t,

0 0 1

In this array, A is an s-by-s nonsingular matrix, B an (n - s)-by-(n - s) nonsingu-
lar matrix; X is any s-by-(n - s) matrix, t, is a 1-by-s column vector, t, is a
1-by-(n - s) column vector, and the last row of the matrix has all zero entries ex-

cept in the last column, where there is a 1. Then the mapping Px may be explicitly
represented by

A X t
B t,
P*OBt2=( )
r 0 1
0 0 1

LEMMA 1. If h(T') has no elements of finite ovder, then Px(T") is isomorphic
to h(I'); equivalently: an element of T acts trivially on An-s if and only if it is in
T.

Proof. By a straight-forward calculation one can show that Py is a homomorph-
ism. Let y in T be in the kernel of Px. We shall show that y is a pure translation.
Consider yn (n=1, 2, ---). If t, represents the translation components of yn, then
ty = Zf:l anit; for all n. Hence, by multiplying y™ on the left by a properly chosen
element of T, we obtain an infinite sequence of elements of T with bounded transla-
tional components. Hence, since I' can have no accumulation point or fixed points,
y? is in T, from some n on. But since h(I') has no elements of finite order and

A X
h(I") is isomorphic to the group of n-by-n matrices ( ) it follows that y is a
0B

pure translation. But any pure translation in I" is in the kernel of P,. Therefore
P,(I") is isomorphic to h(I’).

LEMMA 2. Under the hypothesis of Lemma 1, A™-S/P,(T") is a compact Haus-
dorff manifold.

Proof. Assume that there exists an x in A2-5 and an h in P,(I") such that
h(x) = x. Let ¥ € Px!(h). Then for all x' in A™ such that pxXx'= X, px(yPx') = p,x .
Hence, reasoning as in the proof of Lemma 1, we see that ¥ must be a pure transla-
tion and that h is the identity element of P,(I’). Therefore P,(I') operates without
fixed points on AR-S,
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Assume that hj, **, hy, +«- € P,(T"), and that an x in A™-% exists such that
{hi(x)} (i=1, 2, ...) is a Cauchy sequence. Let x' in A™ be such that p,x'= x.
Then again we can find y; in I' such that P, y; = h; for all i, and such that the y;x'
are in a bounded domain of A™. This contradicts the hypothesis on T.

In a similar way, we can show that An-S/P,(I") is a compact Hausdorff space.

Definition. For any m, and m, in AR/T" we say that m, is equivalent to m,
(m; ~ m,) if there exist pre-images ¥, and X, in A™ of m, and m,, respectively,
with the property that p«X, = pxX,. We denote by X the identification space for
A™/T under ~, by p the projection of A®/T" onto X, and by T’y the kernel of Py
acting on I .

LEMMA 3. T'y;D T, and X = A*-S/(C'/T,). If Py () has no elements of finite
ovder, then Ty = T and X = A®-5/P,(T).

The proof of this lemma is straight-forward, and it will be omitted. Together,
the three lemmas supply a proof of Theorem 1 of the Introduction.

2. PROOF OF THEOREM 2

LEMMA 4. Lel p denote the projection of A™/T" onto X. Then for x in
X, p~i(x) is a compact locally euclidean manifold (Riemann manifold with zevo curva-
ture and torsion).

Proof. We now have the commutative diagram

An P_,* AT-S
Pyl P2
AYrE x

where p, and p, are defined in the obvious manner. For x € X, let a in An-S pbe
such that p,(a) = x. Let p;*(a) = E, and let T, be the subgroup of T' which maps
ES onto itself. Then p, (px'(p;'x)) is homeomorphic to EZ/T,, and equals p~i(x).
Since I'; contains s linearly independent translations T, I',/T must be a finite
group. Hence EZ/I‘ , can be considered as a compact, locally affine space with
finite holonomy group. Hence the affine connection can be induced by a Riemann
metric with zero curvature and torsion, and Eg/l" , is a compact, locally euclidean
manifold.

LEMMA 5. For each x, in X, theve exists a neighborhood U(x,) so small that
r, c I‘xn Jor each x in U(xy). (The usefulness of such a lemma was pointed out to

me by J. Milnor.)

Proof. In the proof of this lemma, we shall actually need the fact that the mani-
fold A™/ is a Hausdorif space. In terms of the action of I' on AR, this may be
stated as follows: given nonequivalent x and y in AR, there exist open sets U(x)
and V(y) such that y,U(x)n y,V(y) is empty for all y, and y, in I'. Let us assume
that the lemma is false. Then there exist Ef in ¢ (i=1, 2, -»:) and an E$ in ¢
such that p Ef converge to P.E; in A"~S, and with the further property that if
r; (i=1, 2, ) leaves Ef fixed, there exists a y; in I'; which does not leave E$
fixed. Choose y; in A™ such that y; € E} for all i, and such that the sequence of Vi
converges to y, in E§. Then new % can be so chosen (since T C T, for all i) such
that the y;y; are bounded, and hence a properly chosen subsequence of the y;y; may
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be assumed to converge to some y. Now chose any open sets U(y) and V{(y,). Then
there exist y; in V and y; in I" such that y;y; are in U. This contradicts the
Hausdorff axiom, and hence proves the lemma unless y = v,y,, where y, is not the
identity of I'. But y; converges to y,, and ygly;y; converges to y,. This implies
that the orbits of y, under I" do not have the property that there exists an open set
of y, all of whose translations under I' are disjoint, unless ygly; = e for all i
greater than some fixed N. But y;ly; = e contradicts the assumption that y;y, is
not in Ej. This proves the lemma.

LEMMA 6. Let the kernel of P* be T',. Then theve exists a dense open set 'V,
in X such that for any x in U,;, p~*(x) has fundamental group T,.

Proof. It is easy to verify that I'; is a normal subgroup of I'. Lemma 5 and the
definition of ', imply that the set U, of points x such that p~*(x) has fundamental
group I', is open in X, We must now show that each point x not in U, has the
property that every open neighborhood of x meets U,. Let I'y be the subgroup of T
leaving Ej3 fixed, where p,(a) = x. Then T', DI',. Now the homogeneous parts of
T'x and h(I'y), constitute a finite group. Since h(I'y) is a finite group, it has only a
finite number of subgroups. But these subgroups determine the set of points in a
neighborhood of x which are left fixed by groups other than I',. Each of this finite
number of groups leaves fixed a linear space of dimension less than n - s. Since
there are only a finite number of subgroups, every open set containing x meets U,.

LEMMA 7. C,=X - U! is an ANR (ANR = absolute neighborhood retract).
Furthermore, theve exisis a finite number of sets U%, +--, U2 that ave open in C,
and dense in C,, and such that over each U} (i =1, *+-, r) we have a local product

bundle. Furtheymore C, - U? is a closed ANR.

Proof. The first part of the lemma follows from the fact that C, is locally the
union of a finite number of planes. The second part can be proved by applying the
preceding lemmas to these planes, one at a time.

By induction, we see that we have fulfilled the hypothesis required for applying
the Firy spectral sequence as given in [2]. This completes the proof of Theorem 2.

3. PROOF OF THEOREM 3

Let I be the fundamental group of M, with nontrivial radical R. Then, since R
is solvable, R contains a nontrivial normal abelian subgroup. Since I, being invar-
iant under all automorphisms of R, operates without fixed points, it has no elements
of finite order. Hence the nontrivial normal abelian subgroup must be free abelian
on s generators, for s > 1. We denote it by ZS. Now, since ZS is invariant under
all automorphisms of R, and R is a normal subgroup of I', Z$ is a normal subgroup
of T'. But by [3, Theorem 12, p. 308], every normal abelian subgroup of I" has all
eigenvalues equal to 1, if A"/T" is compact. Hence Z5 can be simultaneously diag-
onalized, and it lies on a unique minimal algebraic subgroup G of A(n). Further-
more, it is easy to see that G/ZS is compact and is homeomorphic to the s-dimen-
sional torus. Now the group G is a normal subgroup in I'G. This follows from the
fact that yGy-* > Z*S for y in I" and yGy~! is an algebraic group. But G .is the
unique minimal algebraic subgroup containing ZS; therefore yGy-!= G, and G is
normal in I'G. (This argument was suggested by G. D. Mostow.) We may now con-
struct a proof of Theorem 3 by a method analogous to that used in proving Theorem
2. '
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4. AN EXAMPLE

Let

A= 1 1 0 0\,

1 0 0

1 1

1
B= [-1 0 0 0\,

1

1 0 3

-1 0

1
T = [A, B?] = 1 0 0 1\,

1 0 0

1 0

1

where all omitted entries are zero and the bracket denotes the commutator.
By straightforward calculation, we have
BTSB! =T-5, BASB-!=A-S,
B-lTsB=T-5, B-lASB=A"S,
Hence the subgroup of T" generated by A, B? T is a normal subgroup. Call it T''.
Then any element of T' can be written as BY' or y', for 9" in I''. Since A™/T' is a

compact, locally affine manifold, it is easily verified that A3/T" is a compact, locally
affine manifold whose holonomy group contains elements of finite order.
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