INDEPENDENT PERFECT SETS IN GROUPS
Walter Rudin

INTRODUCTION. We shall consider locally compact abelian groups (written ad-
ditively) in which every neighborhood of the identity 0 contains elements of infinite
order; for brevity, we shall call such a group an I-group.

Hewitt has recently proved [1] that the convolution algebra of all regular, com-
plex, bounded Borel measures on an I-group is not symmetric. This is an interesting
extension of an earlier result of Sreider {3] concerning the measure algebra on the
real line. The crux of Hewitt’s extension is the construction, in every I-group, of a
Cantor set (that is, a set homeomorphic to Cantor’s ternary set) which is indépendent
in the sense defined below. His construction depends on a fairly involved structure
theorem and on the consideration of special cases (p-adic groups and complete direct
sums of cyclic groups, in particular).

The present paper contains a much simpler construction of such sets. We use a
modest amount of structure theory to reduce the problem to the case of a metric I-
group, but in the metric case we simply imitate the usual construction of a Cantor
set on the line as the intersection of a sequence of sets E, which are unions of 2%
intervals.

DEFINITIONS. A subset E of an abelian group G is independent if the following
is true: for every choice of distinct points xj, *-+, xj in E and of integers nj, ---, nj,
not all 0, we have

n) Xy + MpXp + 0t + NyX;# 0.
By a compact neighborhood we shall mean the compact closure of a nonempty

open set,

For k=1, 2,3, ---, GX will denote the topological space which is the cartesian
product of G with itself, taken k times; that is, Gl = G, Gk = Gk-1xa@G.

For any group-theoretic terms used, we refer to [2].

The main result of the paper is as follows:

THEOREM. Every I-group contlains an independent Cantor set.
The proof will be in two steps:

STEP 1. Every metric I-group contains an independent C_,‘antor set.

STEP 2. Every I-group contains a closed subgroup which is a metric I-group.
(We use metric synonymously with metrizable.)

LEMMA 1. Suppose G is an I-group, nji, -+, nx are integers, not all equal to
zevo, and E is the set of all points (xy, -+, X3) in GX at which

n Xp + DX+ oo+ N X #0.

Then E is a dense open subset of Gk
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Proof. Let f be the mapping of GK into G defined by
f(xl, cey, Xk) = l'll Xl + nz XZ + *°c + nka.

Since f is continuous, f~1(0) is closed, so that E is open.

Assume that £-1(0) contains a nonempty open set V = Vi XV2X++XVy., Fix j so
that n; # 0, and fix x; € Vj for i+ j. Put xg=2;,; n;X;. Then njx = -xq for all
x € Vj. Let W be the nelghborhood of 0 in G wh1ch cons1sts of all elements x - y
(x € Vj, y € Vj). For every we W we have

l'le=l'le-njy=—Xo+Xo=0,

which contradicts the assumption that G is an I-group.
Consequently, f-1(0) has empty interior, and the lemma is proved.

PROOF OF STEP 1. Let G be a metric I-group. Let P, be a compact neigh-
borhood in G.

Suppose P, has been constructed (r = 1, 2, 3, ---), such that
P_= p(l)u p(Z) U*+U p(S) ,

where s = 2771 and the sets P(l) are disjoint compact neighborhoods. Let Q be the
set of all points (x;, **+, X, ) € G 25 guch that the conditions

(*) |ny|+ s+ |mg| >0, |ny|<rfori=1,-.,2s

imply nixj+ <« + npgX25# 0. Applying Lemma 1 a finite number of timeé, we see
that Q is a dense open subset of G2S. Thus the set

P (Ux P(1)x P(2)x P(2) x ... x P(s) x p(s)

contains an open set Vi XV X**XV34_1XV2s which lies in Q.

Since G is dense in itself, there are disjoint compact neighborhoods

Pl cv, (=1, -, 26)

whose diameters are less that 1/r. Put

= 1 LN} ZS
Pr+1 - P1§+)1 U Ul:'£'+1) :

Then P.,; CP,, and if x; € Pg.ill (i=1, .-, 2s), the conditions (*) imply that
NXp+ o+ NpgXp. # 0. -

Consequently the following statement is true: if xj, ---, Xj are distinct points of
P11, if no two of these points lie in the same set Pg.ll, 1f {nli + oo |n l > 0 and
|n1 <r fori=1, -, j, then nyx) + -2 + n3x;# 0.

Define P = n o1 Pr. Then P is evidently a Cantor set. Suppose xj, -+ , Xj are
distinct points of P, and nj, ***, nj are integers, not all 0. Choose r so large that
|n;| < r for i =1, ++, j and that none of the sets P )1 contains two of the points
X}, ***s Xjo The above remark shows that n; x) + --- + njx;# 0, so that P is an inde-
pendent set.
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This completes the proof of the theorem for metric I-groups.
We now insert a purely algebraic lemma:

LEMMA 2. Let S be an abelian group which is not of bounded ordev. Then there
is a homomorphism of S onto a countable group T which is not of bounded ovder.

Proof. S contains a countable subgroup S, which is not of bounded order, and S,
can be embedded in a countable divisible group T, [2; p.12, Exercise 5]. Since T,
is divisible, the identity mapping of S; into T, can be extended to a homomorphism
h of S into T, [2; p. 11, Exercise 1]. Put T = h(S). Since S, = h(S,)c TcT,, T is
countable and not of bounded order.

LEMMA 3. Let K be a compact abelian group which is not of bounded ovder.
Then X is an I-group.

Proof, For n=1, 2, 3, ---, let E, be the set of all x € K such that nx = 0. As-
sume that one of these sets E, contains an open set V. Let W be the neighborhood
of 0 which consists of all elements x -y (x€ V, ye V). Then nz=0 for all ze W.
The group H generated by W is compact and open, and K/H is finite (being compact
and discrete). If K/H has p elements, it follows that px € H and npx = 0, for every
x € K; thus K is of bounded order.

This contradiction shows that none of the compact sets E, contains an open sub-
set of K. Hence the set of all elements of infinite order, which is the complement of
U7T E,, is a2 dense subset of K. The lemma follows.

PROOF OF STEP 2. Let G be an I-group and let G, be an open-closed sub-
group of G, generated by a symmetric compact neighborhood of 0. It is well known
[4; p. 110] that G, contains an open-closed subgroup isomorphic to the direct sum of
R™ and K, where R™ denotes n-dimensional euclidean space (for some n> 0) and
K is compact. If n> 0, R2 furnishes the desired metric I-group.

If n= 0, then K is an open subgroup of G and hence is an I-group. We now use
the duality theory for compact and discrete abelian groups:

The character group S of K is not of bounded order. By Lemma 2, S can be
mapped homomorphically onto a countable discrete group T. Let H be the character
group of T. Then H is a compact subgroup of K, H is not of bounded order, and
Lemma 3 implies that H is an I-group. On the other hand, the fact that T is count-
able implies that a countable family of continuous functions separates points on H,
so that H has a countable base and is therefore metric. This completes the proof of
the theorem.
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