THE ASYMMETRY OF CERTAIN ALGEBRAS OF
FOURIER-STIELTJES TRANSFORMS

Edwin Hewitt

1. INTRODUCTION

Throughout the present paper, G will denote a locally compact Abelian group, and
X its character group. We write the group operation as multiplication except in
dealing with certain classical cases: no confusion should arise. (For all group-
theoretic facts and terms not explained here, see [10].) The symbol R denotes the
additive group of real numbers; T the multiplicative group of complex numbers of
absolute value 1; N the additive group of all integers; Z(m) the additive group of
integers modulo m (m = 2, 3, ---); and A, the additive group of p-adic integers
p=23,5,7 11, ***). For A and B in G, the symbol AB denotes the set
{ab:a€ A, be B}.

Let B (the Borel sets in G) be the smallest o-algebra of subsets of G contain-
ing all compact sets. (For all set- and measure-theoretic terms and facts not ex-
plained here, see [3].) Let .# (G) denote the set of all regular, countably additive,
complex-valued, bounded Borel measures on G. For X € .#(G), one can write

(1.1) A=Ay = A+ i - A,

where A, Ay, A;, and A, are nonnegative real measures in 4 (G), A, is singular
with respect to A,, and A; is singular with respect to A,. Let |A| =X+ A+ A+ A,
We say that A is concentrated ona set E€ & if |A[(EY) = 0.

Let G (G) denote the set of all continuous complex-valued functions on G each
of which is arbitrarily small in absolute value outside of some compact set. It is
well known that _# (G) yields a concrete representation of the conjugate space of
C w0 (G) (under the uniform norm in G «(G)), the mapping

f—+§ T R ()
G

being the general bounded linear functional on @ . (G). When each A in .# (G) is
given its norm as a linear functional, .#(G) becomes a complex Banach space.

It is also well known that ,#(G) is a Banach algebra under the operation of con-
volution:

(1.2) | o = tey) aue) ane

for A, p € 4 (G) and f € C(G) (see for example [8], 1.4.6). The value of the mea-
sure A*y for the Borel set E is
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(1.3) SG p(x™1E) d\(x) .

For X € 4 (G), let A be the element of .#(G) such that

(1.4) ) = gG D dA(x)

for all f € € (G). It is clear that
(1.5) ME) =ME-D

for all E € 8. Also, we have

(1.6) R CLCECECS

for all x € X and x € M(G).

Now suppose that (G) admits an ad]omt operation A — A* under which it is
symmetric in the sense of Gel’fand, Ra1kov, and Silov ([2], p. 139). The uniqueness
theorem for Fourier-Stieltjes transforms and (1.6) show that A* must be equal to X
for all X € M(G).

Sreider ([13], pp. 311-313) has shown that there is a measure o € A (R) and a
multiplicative linear functional M, on .#(R) such that M,(0) = 1 and M,(©) = 0; that
is, #(R) is asymmetric. We shall extend Sreider’s result to a large class of lo—
cally compact Abelian groups.

1.1. MAIN THEOREM. Let G be a locally compact Abelian group such that
every neighborhood of the identity contains an element of infinite ovdev.t Then
there exist a measuve o € M(G) and a multiplicative linear functional M, on AH(G)
such that My(o) = 1 and My(0) = 0. Thus . (G) is asymmetric.

Theorem 1.1 can be rephrased as follows.

1.2, Let X be the character gvoup of a group G such that every neighborhood of
the identity in G contains an element of infinite ovder. Then the algebra of all func-
tions on X that ave Fourier-Stielljes tvansforms is asymmelvric.

In Sections 2 to 5, we carry out the proof of Theorem 1.1. In Section 6, we draw
some inferences from it.

2. THE FIRST STEP

This section is modelled on Sreider [13].

2.1. THEOREM. Suppose that G contains a homeomovrphic image P of Cantor's
ternary set containing a countable subset N, such that the elements of PN Ny = Q

T The writer is indebted to Professor Deane Montgomery for this simple character-
ization of the class of groups studied and for several helpful conversations, Professor
Walter Rudin and Dr, John H, Williamson have also made useful comments,
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are independent in G. That is, if X1, ***, Xg € Q and a, *+, & are integers, the
equality
a) Ay

(2.1) X, "tx, =e

tmplies that a)] = az =+ =ag=0. Then Theorem 1.1 holds for the group G.

We proceed to prove Theorem 2.1.

2.2. LEMMA. For every positive integer n and every t € G, the set (Q™t)N (Q~1)
contains no move than n + 1 points.

Proof. Assume the contrary. Then for some n, there exist n + 2 equalities
(2.2) y(i) x(li) xgi) cex(@) =t-1 (i=1,2,+,n+2),
where the elements y(1), y(2), ... n(n+2) are all distinct. This implies that
(2.3) y(l) xsl)x(zl) x1(11) = y(i) x(li) X(Zi) "'XS) (i=2, 3, ,n+2),
If all of the x’s and y’s belong to Q, then the independence condition on Q implies

that there exist distinct indices i,, i3, *+, i, such that y(d) = xg?) (i=2,3,+,n+2),
This contradiction proves the lemma. J

2.3. LEMMA (see Raikov’s construction in [2], pp. 184-186). Let § be a nonvoid
Jamily of o-compact subsets of G with the following properties:

(2.4) if Ae §, B is o-compact, and B C A, then Be §;
0 o0

(2.5) {AL} 1€ § implies U, 1A, € §;

(2.6) A,Be § implies ABe §;

(2.7) Aed and te G imply tAe §.

Let R be the set of all measures u € M(G) such that |p| is concentrated on some
element of §, and let ¥ be the set of all measures € M(G) such that |p|(A) =0
Jovall A€ §. Then & is a closed ideal in M(G), and R is a closed subalgebra of
A(G). Furthermore, ((G) is the dirvect sum of ® and ¥: every u € M(G) can be
written in just one way as U = Q' + ", wherve u' € R and pu" € 4.

Proof. Consider first 4. It is obvious that 4 is a linear subspace of .#(G). An
-elementary argument, which we omit, shows that 4 is closed. To show that ¢ is an
ideal in .#(G), consider any u € 4 and X € #/(G). Write u in the form (1.1). It is
clear that u,, u,, p;, pu, arein 4. If now A € §, we have t™1 € §- for all te G, and
hence uj(t-lA) =0 (j=1, 2, 3, 4. Therefore we have, by (1.3),

Ak p(A) = gc u(t-1A)aa( = 0.

Therefore A*pe 4 if A >0 and p € 4. Writing a general A in the form (1.1), we
infer that A *p1 € 4. That is, 4 is a closed ideal in _#«/(G).

Next consider #. As above, it is easy to see that & is a closed linear subspace
of J#(G). Suppose that X, u € &, and that A, p > 0. Then X and u are both
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[- ]
concentrated on a certain set A € §. Let B = Un=1 A", Then Be §, A and u are
concentrated on B, and B2C B. Now, for every E € 9, we have-

e = { aemapw = aet@n Ao+ § ael@nsauw.

B B B

It is easy to see that B-(EN B') C B', so that the last integral on the right vanishes
for all E € B. Therefore A* pu is concentrated on B. For general A, g € &, write
A and p as linear combinations of nonnegative measures as in (1.1). Each summand
Aj and py is in &, hence A5 * 1y is in &, and finally A* y is in &.

It remains to show that every p can be written in one and only one way as
p'+ u", where p'e # and u" € 4. As before, we may suppose that u > 0. For
Ee 9, let

pn'(E) = sup{ u(B): Be §, BCE},
w"(E) = u(E) - u'(E).

Then p' € #® and u" € 4. Uniqueness is also easy to establish. We omit the de-
tails. This completes the proof of Lemma 2.3.

2.4. LEMMA. Let §, 9,and # be as in Lemma 2.3. Then the mapping
(2.8) p— p'(G)

is a multiplicative linear functional on A(G).

Proof. The mapping (2.8) is clearly a linear functional. Since ¢ is an ideal, we
see that (A *p)' = A" *pu' for all A, u € #(G). Since X' *u'(G) = A'(G) - u'(G), the
lemma follows.

2.5. Proof of Theorem 2,1. Consider the smallest family & of sets that contains
P and satisfies conditions (2.4) to (2.7). Since P is a homeomorph of Cantor’s ter-
nary set, there is a nonnegative, countably additive Borel measure ¢ on P such that
o(P) =1 and o({x}) = 0 for all points x € P. We extend o to all Borel sets E in G:
o(E) = o(EN P). Clearly o is concentrated on Q, since o vanishes for points. Since
Q€ §, we have o'= 0o, for this choice of §. Since & is the least family of sets con-
taining P and satisfying the conditions (2.4) to (2.7), Lemma (2.2) implies that the
set Q! intersects every set in & only in a countable set. The measure o is con-
centrated on Q™ %, and hence by the definition of the ideal ¢, we have o€ 9, that is,
d' = 0. Therefore the multiplicative linear functional M, defined by (2.8} carries o
into 0(Q) = 1 and carries o into 0. Thus .#(G) is asymmetric.

3. THE SECOND STEP

We here prove a structure theorem for locally compact Abelian groups of no
great novelty, but perhaps of some interest on'its own account, and in any case es-
sential for the proof of Theorem 1.1.

3.1. THEOREM. Let G be a locally compact Abelian group such that every
neighborhood of the identity contains an element of infinite ovder. Then G contains
a subgroup homeomorphic and algebraically isomovphic to one of the following:
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(3.1) the group R with a topology no strvonger than its usual topology;
(3.2) the group T with its usual topology;
(3.3) a full divect product
o0
.
P Z(,5,
k=1

where {pk};::l is a sequence of strictly increasing prime numbers and {nk};:’=1 is
a sequence of posilive integers;

(3.4) the p-adic integers Np for some prime p.

Proof. Let U be an open neighborhood of e in G such that U"! = U and U is
compact. Let H, be the open and closed subgroup U 03:1 U". A standard theorem in

the theory of locally compact Abelian groups ([12], p. 274, Theorem 5) asserts that
H, is a direct product:

(3.5) H, = R*XNPXH,,

where a, b are nonnegative integers and H, is a compact group. If a is positive, we
have (3.1). If a is zero, then H, is a compact open subgroup of G and must contain
an element of infinite order, say x. Let H, be the closure of the subgroup {xn}z’= o0 ®
Let H, be the connected component of the identity in H,. Suppose that H, # {e}. Then

H, is an infinite, compact, connected group with a countable dense subset and hence

4
has an open basis of cardinal number less than or equal to 2“°. Another well-known
theorem ([12], p. 268, Example 67) asserts that there is a continuous homomorphism
¢ of R into H,. The homomorphism ¢ can be made one-to-one if the character
group of H, contains two independent elements, and the image of R under ¢ will be
the group T otherwise. Thus we have (3.1) or (3.2) if H, = {e}.

Suppose finally that H, = {e} . Then H; is an infinite, totally disconnected, com-
pact monothetic group [4], and its character group Y is a subgroup of the multiplica-
tive group {e27ir}  where r runs through all rational numbers. Thus Y is an alge-
braic direct product of primary groups ([9], p. 5, Theorem 1). Let S, be the sub-
group of Y consisting of the elements whose order is a power of the prime p. Then
Y=S5,88,&S,®---. A finite group S, containing an element distinct from the iden-
tity is clearly isomorphic to Z(p™) for some positive integer n. If all of the Sy's
are finite, then H, is the full direct product of the character groups of the ’s.
Each of these being isomorphic to Sp, we infer that in this case H; has the form
(3.3). An infinite group Sp must be the group of all numbers of the form

e2M(s/P")  (n=1,2,8,+ 8=0,1,2 -, p" - 1),

That is, such an S; is the p”® group. The character group of the p™ group is the
group of p-adic integers, in their usual topology (see for example [7]). Thus H, in
this case is a full direct product of compact groups one of which is the group of
p-adic integers. Thus we are in case (3.4).

3.2 Note. Groups of the sorts described in (3.1) to (3.4) obviously contain arbi-
trarily small elements of infinite order. Hence the converse of Theorem 3.1 holds.
Obviously too there exist compact infinite Abelian groups without arbitrarily small
elements of infinite order.
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4, CONSTRUCTION OF THE SET P

We now show that every group of the form (3.1), (3.2), (3.3), or (3.4) contains a
subset P satisfying the conditions set forth in Theorem 2.1.

4,1. The group R. This case has been dealt with, albeit incompletely, by Sreider
[13]. He cites a construction given by J. v. Neumann [11] of a perfect set S of alge-
braically independent real numbers. The set S consists of all numbers

© g2ftx]
(4.1) a(t) = Z} 5 (t>0).
k=0 k
22

(For a real number u, we write [u] for the integral part of u.) v. Neumann shows that
S consists solely of algebraically independent real numbers. The set S is clearly
dense in itself, but is not closed. The function a defined on 0 < t <« by (4.1) is
strictly increasing, right-continuous everywhere, and left-continuous exactly at ir-
rational points. Hence the numbers sup{a(t): t < r} = b(r) (r rational and positive)
comprise the set SNS'. The set S, being perfect, contains a homeomorph P of
Cantor’s ternary set ([6], pp. 318- 323) Let N, = {b(r): r rational and positive,

b(r) e P}. Then P and N, satisfy the hypothesm of Theorem 2.1. For, although the
mapping of R into the group G may be only a continuous and not a b1contmuous iso-
morphism, still, on the compact set P, it is bicontinuous.

4,2, The group T. Let u be any fixed number a(t) (t > 0) as in (4.1). Para-
metrize T as the group of all numbers

4.2) {e2mix/u bocx <u
Let
(4.3) a;(t) = e2mMa(t)/u  (t>0).

Then the set S; ={a;(t)}; > has all of the properties ascribed to S in 4.1, and sets
P and N, with the properties required in Theorem 2.1 can be constructed exactly as
was done in 4.1.

4.3. The group Pf:zl Z(pll:k). In 4.3 alone, we denote by H the group P3-; Z(py).
We may think of H as the set of all sequences a = {al, a,, a,, .-}, where all of the ayx

are integers (0 < ax< pﬁk) and (a + b)x = a+ by, the addition being carried out

modulo pﬁk (k=1, 2,3, ---). H has the topology of a countable Cartesian product of
finite discrete spaces, and is hence metrizable, zero-dimensional, and compact. The
construction of our set P in this case is suggested by v. Neumann’s construction
(4.1). For every real number t (1 <t < 2), let A(t) be the sequence in H such that

1 if k=[2""],1=0,1, 2, -,
(4.9) A, =
0 otherwise.

It is easy to see that the mapping t — A(t) (1 < t< 2) is one-to-one. Let
S={A(®)} 1<tz Itis simple to show that if {t }o-; is a decreasing sequence of
numbers (I < t, < 2) with limit u, or an increasing sequence with irrational limit
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u, then limp—w A(ty) = A(u). Hence the only limit points of S not in S are elements
of the form lim,_,,A(t,), where {tn}r‘;il is a strictly increasing sequence with ra-
tional limit u. It is easy to show that there is just one such limit point for every
rational u (1 < u < 2), and hence SN S' is a countable set. It is clear that S is dense
in itself. The set S, as a perfect subset of the zero-dimensional compact metric
space H, is homeomorphic to the Cantor ternary set ([1], p. 119, Satz VI).

It remains to show that the elements of S are independent in H. Suppose that
1<t <ty < <t,,<2 and that ’

(4.5) ay Aty) + - +a  At,)=0

in H, where «], -+, @y, are nonzero integers. Choose the positive integer 1 so
large that the following conditions hold. Firsi,

t t t -
4.6) 1>max{—log(4—2m) -log (2 m-zm'l)}_

log 2 ’ log 2

t
Second, if k = [2 ™', then the inequality
n
4.7) Pn" > ||

is to hold. If (4.6) holds, a routine calculation shows that the only entry at the kth
place in ZI2; a; A(f;) is the number a,,. Hence we must have a,, =0 (mod pyxK),
and by (4.7), we must have a,, = 0. This contradiction shows that S consists solely
of independent elements. Thus the set S and the set SN S' can be used as the sets
P and N,, respectively, in Theorem 2.1.

4.4. The group A,. This group can be thought of as the set of all sequences
a={a;, a,, ***}, where all the a; are integers (0 < ay < p), and where addition is
defined by induction (see for example [5], pp. 106-109). Write a, + b, = d,p + r,,
where 0 <r,<pandd=0or d=1. Then (a+b),=r,. If r;, rp, -+, r and
dj, dp, *-, dx have already been defined, write dyx + ax4+] + P41 = dk4+1P + T+l
where 0 <rjy,; <p and dy,; is a nonnegative integer. Then (a + b)) = ryy;.

The group A has the topology of a Cartesian product of a countable number of finite
discrete spaces and is hence metrizable, zero-dimensional, and compact. We define
the set SC /A, as the set of all sequences A(t) (1 <t < 2), just as in S;J:A). The set
Sc A, has precisely the same topological properties as the set S CPy,; Z(ppK) that
was discussed in 4.3. To show that S can be used as P, and SN S' as N,, in Theo-
rem 2.1, we need therefore only show that the elements of S are independent in Ap.
Suppose that 1 <t; <ty <+ <t,,<2 and that

(4.8) @y Alty) + oo+ 0 Alt) =0 inay,

where aj, -+, 0, are nonzero integers. tWe may suppose that a,, > 0. Consider a
positive @; (j <m) and an index k = [27%] n=0, 1, 2,,-+-). Suppose that

(4.9) Olj = b((‘)]) + b(lj) p+ b(zj) pZ  see 4 bsj_)pvj
J

where 0 <b;<p for i=0, 1, ---, vj (we shall also use the same representation for
am). Then the entries in the sequence o A(tj) at the places numbered

b

kK, k+1, >, k+v;
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will be bg, bq, *-, bvj, respectively, if n is large enough. The entries in the places
n+l+t;
k+vi+ 1, k+vi+2, -, [2 J] (if any) will be zero. Now suppose that n is

chosen so large that the inequalities
t. t.
log vj- log (27 -2 i-1)

(4.10) n> Tog 2

hold for all j with positive aj. Suppose also that

ty+1 try
(4.11) n> - l°g(210g =2 )
and

ti tm—

log(2 " -2 )
(4.12) n> - Tog 2 .
Let B=Zo; A(t) summed over all j with positive aj. Then B has zero entries at
n+t n+1+t

all of the places [2 ™], [2 In] +1, -, [2 '], Hence B can not affect the en-

tries of a,, A(t,) in this interval. Thus, if (4.8) is to hold, the entries
b¢™, ™, e, b 0,0, 4, 0

of a_  A(t,) in the places

[ n+t n+t n+1 +t1]

(4.13) m] [27 ™+ 1, -, [2
must be cancelled by the entries in the sequence C = X2 ajA(tj), where the sum is
taken over all j with aj negative. Suppose that there are s such a;’s. As before,
if n is large enough, say n > L,, every «; A(tJ) will have the entry p - 1 in every
place of the interval (4.13). For (4.8) to hold a simple calculation shows that we
must have

(4.14) s(p-1) + b‘(rm)+ r=sp

m

(r is the “carried-over” number from the preceding place), again if n is sufficiently
large, say n > L,. Suppose that o, > 0. If (4.14) and (4.8) hold, we have entries 0
in the sequence ZiZ; a; A(t;) for all places

n+t n+t n+l+t
2 Tlevy, [2 Plevy+1, -, [2 Niu-1,

1 1
where u is defined by b( ) = -—b( ) (1)

have

=0, 0<b “<p. If (4.8) holds, we must

b£1)+ s(p - 1) + s = 0 (mod p),

a contradiction. If o, < 0, a similar contradiction arises. It is therefore impos-
sible for (4.8) to hold, and this completes the proof that S consists of independent
elements.
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5. PROOF OF THEOREM 1.1

The proof of Theorem 1.1 is now complete. Suppose that every neighborhood of
e in G contains an element of infinite order. Then by Theorem 3.1, G contains a
subgroup of one of the forms (3.1) to (3.4). By Section 4, G contains a homeomorph
P of Cantor’s ternary set with a countable subset N, such that PN N, consists
solely of independent elements. By Theorem 2.1, _#(G) admits an asymmetric
multiplicative linear functional.

6. VARIOUS CONSEQUENCES OF THE MAIN THEOREM

We now draw some inferences from Theorem 1.1. Let & denote the space of all
multiplicative linear functionals on A((G), and write as usual u for the function on
such that (M) = M(p) for all p € ,///(G) and M€ S. Let & have the weakest topol-
ogy under which all of the functions it are continuous. Let &, denote the set &,
with the topology under which the sets { M: M e &, M(u) # 0} (M. € (G)) form a sub-
basis for open sets. For each x € X, the functlonal Py, where

P = | X,

is clearly an element of . We can identify X with the subset {P }xex of &; in
fact, the mapping x — PX is a homeomorphism of X into &.

6.1. THEOREM. Let G be as in Theovem 1.1. Then X is not dense in S.

Proof. This follows from the fact that any M lying in the closure in & of the set
of functionals {Px} xex must be symmetric.

6.2. THEOREM. Let G be as in Theovem 1.1. Then theve is a measure
X € #(G) such that IA(PX)I >1 for all x € X and )\ has no inverse in (((G).

Proof. Let £, be the measure such that g.(A) = 0 or 1 according as e € A’ or
e € A. Then ge is the unit of #(G), and M(ee) = 1 forall Me g. Set A=0-70 - e,
where o is the measure referred to in Theorem 1.1. For M, as in Theorem 1.1, we
plainly have M,(x) = 0, so that A has no inverse in M(G). For x € X, we also have
|A@ Ol =11+2i35( )| >1.

6.3. Note. Theorem 6.2 is a generalization of a theorem stated by Wiener and
Pitt ([14], p. 434, Theorem 3) for the case G = R. Their proof seems incomplete,
however, and the proof given by Srelder for the case G =R ([13], p. 314, Theorem 6)
is the first satisfactory one known to the writer.

6.4. THEOREM. Let G be as in Theovem 1.1. Then the topological space S,
has a strictly weakey topology than S, and & fails to satisfy Hausdovff's sepavration
axiom.

Proof. The uniqueness theorem for Fourier-Stieltjes transforms implies that
{PX} ex is dense in &, Since this set is not dense in & (Theorem 6.1), &, has a
strictly weaker topology than &. If ¢, were a Hausdorff space, then the topologies
on S and &, would be identical.

6.5. THEOREM. Let G be as in Theorem 1.1. Then there existis a measuve
X € M(G) such that the function |X| on & does not have the form [i for any
um € ./II(G).
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Proof. Assume the contrary. Let A € .#(G), let M, be a fixed element of &, and
0 a positive real number. The function on © whose value at M€ © is

max{d - |X(M) - R(M,|, 0}

then has the form 11 for some p € .#(G). Clearly, i differs from zero only in the
set {M: M€ &, Ip.(M) - u(M1| < 8} ; hence the & ,~topology is the same as the g-
topology. This contradicts Theorem 6.4.

6.6. Note. Theorem 6.5 does not assert that there is a A€ M(G) for which |i| ,
considered on {Px} xex alone, fails to have the form [i. So far as the writer knows,
the existence of such a A is an open problem.
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