SOME INTEGRAL FORMULAS AND THEIR APPLICATIONS
Kentaro Yano

0. INTRODUCTION

In a previous paper [9] (see also Yano and Bochner [10]), we have proved the in-
tegral formula

(0.1) J [K;ji vivi+ @Ivi)(y; v;) - (V; vi)(v;v)]do = 0.

n

The formula is valid for any vector field vP in an n-dimensional compact orientable

Riemannian space V,, where V; is the operator of covariant differentiation with re-

spect to the Christoffel symbols {jhi} formed with the fundamental tensor gj; of Vy,
where V7 = g¥'v;, where Kj; is the Ricci tensor K33i%, where Ki{j’ih is the curvature
tensor, and where do is the volume element of the space.

Equation (0.1) can be written in the following three forms:

(0.2) [Kjivj vi+ @IV v - %(Vjvi - ViV - vy - (Vjvj)(vivi)] do = 0,

an

(0.3) \ [Kji Vj Vi - (VJ Vi) (VJ Vi) + % (V‘] Vfl +V i VJ) (VJ v; +V ivj) - (VJ Vj)(vivi)] do = 0,
)y
0.0 | K3V - @) - 220, v

Vn

1, : = - .9 . b 2
+5 @IV e VIV - S g, V) vy + Yy Vs - 85V V) ]do = 0.

From these equations, we can easily obtain

THEOREM A (Myers [5], Bochner [1]; see also Yano and Bochner [10)). If, in a
space Vn, the form K jivjvi is positive definite, then theve does not exist a harmonic
vector othev than the zevo vector,

THEOREM B (Bochner [ 1]; see also Yano and Bochner [10)). If, in a space V,
the form K:;Wv' is negative definite, then theve does not exist a Killing vector other
than the zero vector.

THEOREM C. If, in a space Vg, the form Ki; vivi s negative definite, then theve
does not exist a conformal Killing vector other than the zevo veclor.

On the other hand, applying Green’s formula
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(0.5) J gV, v;fdo =0
A2

n

to f= %vhvh, we find that

(0.6) J [V 9; vy, + @3 v)(v;v)] do = o.
Vv

n

Forming the difference (0.6) - (0.2) and the sum (0.6) + (0.3), we obtain respec-
tively

J [(gﬁvjvivh - KA vhvy, + %(Vj i Vivj)(vj Vi - V33
(0.7) Vn

+ (V5 ) (v, vi)]do = 0,

Jv [(gjivivi"h + K v)vy+ %(Vj v+ Vi) (V5 v + Vv
(0.8) n
- (v vj)(vivi)]do‘ = 0.

These two equations yield, respectively, the following two theorems.

THEOREM D (de Rham and Kodaira [6]; see also Yano and Bochner [10]). 4
necessary and sufficient condition for Vj in a space V, to be harmonic is that

(0.9) ghiv;v;vh-Kibvi = 0.
THEOREM E. A necessary and sufficient condition for v! in a space V, to be
a Killing vector is that
i

(0.10) EAAALES S N N G AN

A necessary and sufficient condition for vP to define an infinitesimal affine col-
lineation is that

(0.11) g{;p;} = Vv VR KtV = 0,
v

where £ depotes the Lie derivation with respect to vh, Theorem E now yields the
v

following result.
THEOREM F. An infinitesimal affine collineation in a space VyiS a motion,

The main purpose of the present paper is to derive some other integral formulas
in Riemannian and pseudo-K#hlerian spaces, and to state some applications of these
formulas. A part of the paper was announced at the Summer Institute for Differential
Geometry in the Large, held at Seattle in 1956.
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1. CONFORMAL KILLING VECTORS

Forming the sum (0.6) + (0.4) and taking account of

J (v, VP Vi vi+ (v;v)(v;vI] do = 0,
Vn

we obtain

e - - 2 .
j [(gJ1VjVth+ K;h V1+nTV'h vivl)vh
A\

n

(1.1)
+1(vj iy vivioZgiiy b) (v--+ Vivi - 2gi v a) do = 0
5 v Vi-48 bV jVi iVj - 8jiVaV = U,

from which we have

THEOREM 1.1 (Lichnerowicz [3], [4]; Sato [8)). A necessary and sufficient
condition for vh in a V_ to be a conformal Killing vector is that

n-2

(1.2) gjivj V. vh+ Kbyl 4 vhv.vi= 0.

For an infinitesimal conformal motion, we have

(1.3) %ng = Vj Vi+ Vivj = 2¢gji’

and consequently

' h
(1.4) 3{3 i} = V;V; vhs Kﬁj;hvk = ¢jA?+ ¢iA§1 - gji¢h,
where
¢J = Vj(b.

We call a conformal collineation an infinitesimal transformation &P — &b + vhgt
which satisfies (1.4). From Theorem 1.1 we have

THEOREM 1.2. An infinitesimal conformal collineation is a conformal motion.

Suppose that a vector vh defines an infinitesimal conformal motion; then (1.3)
and (1.4) hold, and consequently

«.h _ _ah h h h
(1.5) e = -A} Vg + Aj Vi# - Vid 85+ V9843

v Kji

it follows that

(1.6) VijVid = 1 e L..
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where

K .
Lj]'_ = "Kji +mgji and K = gltK..

JL°
From (1.6), we obtain

1

ji =
(1.7) EViVi¢ = -3 T (§K+ 2K¢) .
Thus, if K is a constant, we have
.. K
(1.8) ng Vj Vi¢ - = n - 1¢.

Now, applying Green’s formula (0.5) to £2/2, we obtain

(1.9) f [£65 v, v, 1+ g (v,0(v;D]do = 0.
Y

n

Thus, if the function f satisfies an egquation of the form
(1.10) Af = gl Vvt = M

with A = constant, and if A > 0O, then f = 0; and if A = 0, then f = constant,

From (1.8) it now follows that if K < 0, then ¢ = 0 and the conformal motion is a
motion. If K = 0, then ¢ = constant, and the conformal motion is homothetic. But a
homothetic transformation, being an affine motion, is a motion, by Theorem F. Thus
we have

THEOREM 1.3. An infinitesimal conformal motion in a V, of constant nonposi-
tive K is a motion, (Essentially the same result has been obtained by T. Sumitomo
and M. Kurita.)

COROLLARY. If a Vn, with K = constant admits an infinitesimal nonhomothetic
conformal motion, then K > 0,

When V,, is an Einstein space with K > 0, we deduce from (1.6) that

(1.11) Vivie = e (A= -gmegy <0,
from which
(1.12) Vjdi+ Vi¢; = 2rdgj; .
From (1.3) and (1.12), we find that
(1.13) V;wi+ Viwy = 0,

where
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(1.14) W=V - Shi

Thus we have

THEOREM 1.4. If an Einstein space Vy,, with K > 0 admits an infinitesimal non-
homothetic conformal motion defined by v, then Vb can be decomposed into

h_ why 1g4h __.__K
(1.15) vh = whe 2S¢ (A— n(n-1)<0)’

wherve wh is a Killing vector and where $; = V;¢ is a conformal Killing vecior. (A.
Lichnerowicz [3], [4] obtained this result by using the de Rham decomposition of a
vector in a compact orientable space. But the proof above shows that this theorem
is also true locally.)

Suppose that there exist two infinitesimal nonhomothetic conformal motions vh
and v*h; then

vh = wh+—;‘:¢h and wv¥*h = w*h+-%¢*h.

It is easily verified that

(§ 8ot = (& 88 085 = (g8 =

’

e g..
[ppx] I

[pox]P = §¢*h = Apho* - p*h¢) .

This implies

THEOREM 1.5 (Lichnerowicz [3], [4]). If V  is an Einstein space with K > 0,
then
(1.16) L = L,+ L, with [L,L,]cL,, [L,L,]cL, and [L,L,] c L,,

where L is the Lie algebra of the Lie gvoup of conformal motions, L, is the sub-
algebra defined by motions, and L, is the vector space of the gradient of ¢ which
appears in (1.3).
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2. PSEUDO-ANALYTIC VECTORS IN PSEUDO-KAHLERIAN SPACES

We now consider a pseudo-Kihlerian space K, , that is, a space V,  which
carries a tensor F;h satisfying the conditions

e h om .l
2.1 FiFiP= A} (F7F g = gji, Fji = -Fyp),
(2.2) v; Fi® = 0.

First we recall some important formulas in the theory of pseudo-Kihlerian spaces:

e .h ...h .
(2.3) Kkjia F,' -Kyjn Fi* =0,
(2.4) KiaF'ah = _%Kﬁ;hpkl,
(2.5). KF:P - FPRgP = o,
1 kj ih
where
(2.8 Hip, = Kyjin FXi |

From (2.6) and (2.7), we obtain
THEOREM 2.1. If, in a K, K is a constant, then the tensov Hyy, is harmonic,
THEOREM 2.2, If,ina K;,, K=0, then Hiy, is harmonic and effective.

THEOREM 2.3. If, in a K,,,, K = constant and B, = 1, then the K, is an Ein-
stein space.

If a vector field Vi satisfies the condition
(2.9) Fi*Viva - F{¥Vav; = 0,

we call it a covariant pseudo-analytic vector field; and if a vector field vh satisfies
the condition

(2.10) eFP=F;Pv,v* - Fi* v,v" = 0,

we call it a contravariant pseudo-analytic vector field (Sasaki and Yano [7]). Itis
easily seen that if vh is covariant (contravariant) pseudo-analytic, then so is F;h vl
and that if uP and vk are contravariant pseudo-analytic, then [u, v]h, [Fu, v]h,

[u, Fv!P, [Fu, Fv]"® are also contravariant pseudo-analytic.

Now, forming the square of the tensor appearing in the left-hand member of
(2.9), we find that :

(2.11) (Fjbvivb - Fib vaj)(FJfaVivE1 - F{a Vavj)

= Z[gji(vjvh)(vivh) - Fib Fia(vivb)(van)].



SOME INTEGRAL FORMULAS AND THEIR APPLICATIONS 69

On the other hand we have, from Green’s formula,

0= J gl vivy vivh) do = j G Vjvh)(vivh) V8V vi]do
Kan Kon

and

0 = j v, [FP Fiavb(vavj)] do
K2n

1

S [FIP Fl2(g3v) (Vav)) + FIPF2yy(v; vavyl do

KZn

j [FIPF(v;v)(v,v) + K;;vivi]do,
K
2n

by virtue of (2.4) and (2.5); consequently equation (2.11) gives
THEOREM 2.4. In a K, , we have

S '[(gjivjvivh_K{hvi)vh
(2.12)  Kan

+ %(FJbvivb - FIP guvd) (F§? viva - F? vavj)] do = 0.

From this follows

THEOREM 2.5. A necessary and sufficient condition for a vector field v; in a
K, to be covariant pseudo-analytic is that

(2.13) gji vj vivh_ Kihvi =0.

Combining Theorem D and Theorem 2.5, we obtain the famous theorem: A nec-
essavy and sufficient condition for a vector field vb in a K 2, to be harmonic is that
vh be covariant pseudo-analytic.

Next, forming the square of the tensor appearing in the middle member of (2.10),
we find that

(FPy vt - Fg'v I vO)(F2 v, v; - F4V;va)
(2.14) . L
= 2[g"(V;va)(v; v®) + FIP Fi2(g, v)(v;v,)],
from which we obtain
THEOREM 2.6, In a K;,,, we have
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f [(ngvJ Vi Vh + Kl’_h Vi)Vh
K2n
(2.15)

+ %(Fjbv bVi - Fi,iVij)(FiaVaVi - F%iVjVa):l do = 0.

From this, we have

THEOREM 2.7. A necessary and sufficient condition for a vector field v} in a
K5, to be contravarviant pseudo-analytic is that

(2.16) ghiv v vh + Kipvi = 0.

Combining equations (0.6) and (2.16), we can easily prove a theorem of Bochner
[1]: If, ina K,,, Kj; vIv! is positive definite, then therve does not exist a contrva-
variant pseudo-analytic vector field other than the zevo vector. Also, combining
(2.13) and (2.16), we can prove a further theorem of Bochner [2]: In a K, if ub is
covariant pseudo-analytic and vt is contravariant pseudo-analytic, then ubhvy is a
constant,

Let a vector field vP be given in a V,, and consider a geodesic £%(s) in V,,.
The condition that the infinitesimal transformation &R — £h 4+ yhdt transform the
geodesic £R(s) into a geodesic and preserve affine character of the arc length is
given by

aglagt _

L e:ich ko
(2.17) (VJV1V + Kt v )dS & = 0.

If we take a point &P and a unit vector hb at £h the geodesic which passes
through £ and is tangent to hP is uniquely determined, and we can consider the
vector

h _ h eeshyk)hij hi
(2.18) ub = (vj v vh+ Kkji vKk)hi hi
appearing in the left-hand member of (2.17). We shall call (2.18) the geodesic devia-

tion vector of the unit vector hh at the point & with respect to vh,

Now consider n mutually orthogonal unit vectors hha (a=1,2, -, n) and the
geodesic deviation vectors ul(la) of h%‘a) with respect to vh, For the mean of u?a)
we have

1 h 1, i «h i

which shows that the mean is independent of the choice of h(};). We shall call

Ill > u}%a) the mean geodesic deviation vector with vespect to vh., From Theorem
a

2.7, we obtain

THEOREM 2.8. A necessary and sufficient condition for a vector field vb in a
K, to be contravariant pseudo-analytic is that the mean geodesic deviation vector
with vespect to vh vanish.

In a previous paper [9; Theorem 2}, we have proved that the Lie derivative of a
harmenic tensor in a V,, with respect to a motion vanishes. Thus, since Fj; is a
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harmonic tensor, we have ~%Fji = 0, where v! is a Killing vector, and consequently

we have

THEOREM 2.9. A one-parameter grvoup of motions in a Ky, preserves the
pseudo-complex structure of the space.

Conversely, if a K, admits an infinitesimal transformation & — &8 + vPdt
which preserves the pseudo-complex structure of the space and also the volume ele-
ment, then we have (2.16), and V;v* = 0. From Theorem E, we now obtain

THEOREM 2.10. If an infinitesimal transformation Eb — b + vhdt preserves
the pseudo-complex structuve of the space Kan (that is, if the vector v! is contra-
variant pseudo-analytic) andif it also preserves the volume element (that is, if the
vector vh satisfies v;vi=0), then the transformation is a motion.

3. KILLING VECTORS IN KAHLER-EINSTEIN SPACES

We now consider an equation of the form
(3.1) Nf = gjivj Vif = M (A= constant, A < 0)
in a K2,, from which
(3.2) Afy = gl v vty - K2, = My, (1, = Vi),

whence, by virtue of (2.5),

(3.3) AVy = gjiVjvth - K%hva = Avy,
where

Substituting (3.3) into (0.8) and taking account of the condition v;vi =0, we find

(3.5) j

From this integral formula, we have

THEOREM 3.1. If, in a Ky, the form (2Kj; + Agj)vivi is positive definite, then
the equation Af = M has no solution other than zevo.

THEOREM 3.2. If, in a Kihler-Einstein space Kan with K> 0 (Kji = (K/2n)g;3),
K/n+ x> 0, then the equation Af = M has no solution other than zero.

[(ZKj-l+ hgji)vjvi+%(vjvi+ Vivi(v;vi+ vivj] do = 0.
K
Zn

Consequently if the equation Af = Af admits a solution other than zero, then

A

(3.6) %Jr A <0, thatis, A< -+

THEOREM 3.3. If, in a Kdhler-Einstein space Ky, with K > 0, the equation
Af = - (K/n)f admits a solution other than zevo, then v; = F3f, is a Killing vector.
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Now suppose that a general K, admits a Killing vector vi, then we have

(3.7 Zv[j(Fa}i]va) 0 and v;Ely) = FHiyy,

0

by virtue of the condition g Fy;

THEOREM 3.4. In an irreducible K,,, Fii V;j Vi # 0 for a Killing vector vh.

For the proof, we note that if Fiiy;v; = 0, then F%;v, is harmonic, and conse-
quently vP is also harmonic. Thus v, being at the same time a Killing vector and
a harmonic vector, is a parallel vector field, a fact which contradicts the irreduci-
bility.

Consider now an irreducible Kihler-Einstein space K,, with K> 0, and suppose
that K, admits a Killing vector vh, then

(3.8) t = gFiv;v; # 0.

On the other hand, using Vi ViVpt Kkjih vk = 0, we find that

= v ='Vj(%Fihvivh) = Fv,,
and consequently
(3.9) £, = F5v, and v, = -F%41,
from which
(3.10) gjivjvif = -%f.

Thus we have

THEOREM 3.5. If an irveducible Kihler-Einstein space K, with K> 0 admits
a Killing vector vh other than zevo, then the equation (3.10) admits a solution £
other than zevo, and conversely.

Suppose that an irreducible Kihler-Einstein space K,, with K> 0 admits two
Killing vectors vh and wh, corresponding to solutions f and g of (3.10), respec-
tively. Then

FPulv, wh = F'v jSw; = 2(Flv;w) =T 8g = vivig

K. ai
- ;F faVig

K i
- SFNv;0(v; ).

Thus, if we define [f, g] by

[f’ g] = - Fji(ij)(vig) ’
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we have

THEOREM 3.6 (Lichnerowicz [3], [4]. If an irrveducible Kiihlev-Einstein space

K on with K> 0 admits two Killing vectors vh and wP to which covvespond f and g
respectively, then [v, w] and [, ] correspond to each other.

1.

10.
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