AN EXAMPLE OF A FUNCTION WITH A DISTORTED IMAGE

F. Bagemihl

The analogy between measure and measurability on the one hand, and category and possession of the Baire property on the other, is well known (see, for example, [3, pp. 49, 63, 225] and [5, p. 26]); one aspect of it, dealing with rectilinear sections of a plane set, will concern us here.

We shall consider exclusively sets of points in the plane P. Denote by X the set of all real numbers, and by R the set of all positive real numbers. Then

$$P = \{(x, y) : x \in X, y \in X\}.$$

For every $x_0 \in X$, let $L_{x_0} = \{(x_0, y): y \in X\}$, and, for every $r \in R$, let

$$C_r = \{(x, y): x^2 + y^2 = r^2\}.$$

According to Fubini [1], if $E \subset P$ and E is (plane Lebesgue) measurable, then there exists a subset X_0 of X of (linear) measure zero such that, for every $x \in X - X_0$, the intersection $E \cap L_x$ is a measurable subset of L_x . If E is a subset of P of measure zero, then there exists a subset X_0 of X of measure zero such that, for every $x \in X - X_0$, the intersection $E \cap L_x$ is a subset of L_x of measure zero. According to Kuratowski and Ulam (see [4] or [3, pp. 223, 222]), if E is a subset of P that possesses the Baire property, then there exists a subset X_1 of X of first category such that, for every $x \in X - X_1$, the subset $E \cap L_x$ of L_x possesses the Baire property. If E is a subset of P of first category, then there exists a subset X_1 of X of first category such that, for every $x \in X - X_1$, the subset $E \cap L_x$ of L_x is of first category.

The converses of these results are false. If f(x) is a function of a real variable, the plane set $J(f) = \{(x, y): y = f(x), x \in X\}$ is called the (geometrical) image of the function f. Sierpiński has shown [6] that there exists a single-valued function whose image is not measurable, and Sierpiński and Zalcwasser have given an example (in [2, p. 85]) of a single-valued function whose image is not of first category and therefore [3, p. 229] does not possess the Baire property. Sierpiński has also proved [6] the existence of a nonmeasurable subset of P which intersects every (straight) line in at most two points.

Let $p \in P$ and $E \subset P$. We say that E is measurable at p if there exists a (circular, open) neighborhood N of p such that $E \cap N$ is a measurable subset of N; otherwise, E is said to be nonmeasurable at p. Similarly, E is of first category at p if there exists a neighborhood N of p such that $E \cap N$ is a subset of N of first category; otherwise, E is of second category at p.

THEOREM. There exists a function f(x) ($x \in X$) possessing the following properties:

- (a) f and its inverse are single-valued,
- (b) f maps the set of real numbers onto itself,

Received December 30, 1957.

- (c) every line intersects J(f) in at most two points,
- (d) J(f) is nonmeasurable at every point $p \in P$,
- (e) J(f) is of second category at every point $p \in P$.

Remark. Kuratowski has shown ([2, p. 84], [4, p. 250], [3, p. 229]) that, for every single-valued function f(x) ($x \in X$), the set P - J(f) is of second category at every point $p \in P$. With the aid of Fubini's theorem, it is easy to see that P - J(f) is not of measure zero at any point $p \in P$.

Proof of the theorem. By a circular perfect set we mean a set that is a (non-empty) perfect subset of C_r for some $r \in R$. Since there are \aleph elements of R, and every C_r contains \aleph perfect subsets, there are \aleph circular perfect subsets all told, and the set consisting of all horizontal and vertical lines in the plane is also a set of \aleph elements. Hence, the union of these two sets can be well-ordered to form a (transfinite) sequence

(1)
$$Q_0, Q_1, \dots, Q_{\xi}, \dots \quad (\xi < \omega_{\alpha}),$$

where ω_{α} denotes the initial ordinal number of $Z(\aleph)$ (Greek letters will stand for ordinal numbers).

We define, by transfinite induction, two sequences of points, $\{a_\xi\}_{\xi<\omega_\alpha}$ and $\{b_\xi\}_{\xi<\omega_\alpha}$, as follows.

If Q_0 is a circular perfect set, let a_0 , b_0 be any two distinct points of Q_0 . If Q_0 is a horizontal or a vertical line, there exists an $r \in R$ such that C_r and Q_0 intersect in two points: call one of these points a_0 , the other, b_0 .

Let $0<\gamma<\omega_{\alpha}$, and suppose that the sequences of points $\{a_{\xi}\}_{\xi<\gamma}$ and $\{b_{\xi}\}_{\xi<\gamma}$ have been defined so that, for every $\beta<\gamma$,

- (i) $\{a_{\xi}\}_{\xi < \beta}$ and $\{b_{\xi}\}_{\xi < \beta}$ have no point in common,
- (ii) if $\xi \leq \beta$, there exists an $r \in R$ such that C_r contains both a_{ξ} and b_{ξ} ,
- (iii) no horizontal or vertical line contains more than one point of $\{a_\xi\}_{\xi<\beta}$,
- (iv) no line contains more than two points of $\{a_{\xi}\}_{\xi \leq \beta}$.

Then it is evident that (i) to (iv) hold if " $\xi \leq \beta$ " is replaced therein by " $\xi < \gamma$." Let S_{γ} be the set consisting of all horizontal and vertical lines that contain a point of $\{a_{\xi}\}_{\xi < \gamma}$ and all lines that contain two points of $\{a_{\xi}\}_{\xi < \gamma}$. Since $\{a_{\xi}\}_{\xi < \gamma}$ contains fewer than \aleph points, S_{γ} contains fewer than \aleph lines.

Suppose first that Q_{γ} is a circular perfect set. If it contains a point of $\{a_{\xi}\}_{\xi < \gamma}$, we define a_{γ} to be this point. Otherwise, Q_{γ} contains a point—call it a_{γ} —which is not a term of $\{b_{\xi}\}_{\xi < \gamma}$ and does not lie on any line belonging to S_{γ} , because Q_{γ} contains \aleph points and every line in S_{γ} intersects Q_{γ} in at most two points. Let b_{γ} be any point of Q_{γ} that does not belong to $\{a_{\xi}\}_{\xi < \gamma}$.

Now suppose that Q_{γ} is a horizontal or a vertical line. If, for some $\delta < \gamma$, $a_{\delta} \in Q_{\gamma}$, define a_{γ} to be a_{δ} and b_{γ} to be b_{δ} . If Q_{γ} contains no point of $\{a_{\xi}\}_{\xi < \gamma}$, then obviously $Q_{\gamma} \notin S_{\gamma}$. Hence, there exists an $r \in R$ such that C_r intersects Q_{γ} in two points neither of which is a term of $\{a_{\xi}\}_{\xi < \gamma}$ or $\{b_{\xi}\}_{\xi < \gamma}$ and neither of which lies on a line in S_{γ} ; call one of these two points a_{γ} , the other, b_{γ} .

It is easy to verify that (i) to (iv) hold if " β " is replaced therein by " γ ", and so the sequences $\{a_{\xi}\}_{\xi<\omega_{\alpha}}$ and $\{b_{\xi}\}_{\xi<\omega_{\alpha}}$ are well-defined. Let A, respectively B,

be the set of points that are terms of $\{a_\xi\}_{\xi<\omega_{\alpha}}$, $\{b_\xi\}_{\xi<\omega_{\alpha}}$. It is clear from the way in which we defined these sequences and (1), that we can draw the following conclusions. Every horizontal line and every vertical line intersects A in precisely one point. Hence, A is the image J(f) of a function f satisfying (a) and (b); (c) is also immediately evident. To prove (d) and (e), we first observe that, since $B \subset P - A$, every circular perfect set is neither a subset of A nor of P - A. It follows [3, p. 423] that, for every $r \in R$ and any subarc K of C_r , $A \cap K$ is a nonmeasurable subset of K of second category. Now suppose that p is any point of P, and that A is either measurable or of first category, at p. Then there exists a neighborhood N of p such that $A \cap N$ is either a measurable subset of N, or of first category. By an obvious modification of the Fubini or the Kuratowski-Ulam theorem stated above, there exists an $r \in R$ for which $C_r \cap N$ is a (nonempty) arc, call it K, such that $A \cap K$ is either a measurable subset of K, or a subset of K of first category, which we have just seen is impossible. Therefore (d) and (e) are true, and the proof is complete.

REFERENCES

- 1. G. Fubini, Sugli integrali multipli, Atti Accad. Naz. Lincei, Rend. (5) 16_I (1907), 608-614.
- 2. C. Kuratowski, Sur les fonctions représentables analytiquement et les ensembles de première catégorie, Fund. Math. 5 (1924), 75-86.
- 3. ——, Topologie I, Warszawa-Wrocław, 1948.
- 4. C. Kuratowski and S. Ulam, Quelques propriétés topologiques du produit combinatoire, Fund. Math. 19 (1932), 247-251.
- 5. A. A. Ljapunow, E. A. Stschegolkow, and W. J. Arsenin, Arbeiten zur deskriptiven Mengenlehre, Berlin, 1955.
- 6. W. Sierpiński, Sur un problème concernant les ensembles mesurables superficiellement, Fund. Math. 1 (1920), 112-115.

University of Notre Dame

