DISTRIBUTION OF EIGENVALUES OF
CERTAIN INTEGRAL OPERATORS

M. Kac

1. INTRODUCTION

The classical theorem of H. Weyl concerning the asymptotic behavior of the
eigenvalues of the Laplacian can be stated (in three-dimensional space, say) as fol-
lows.

Consider the integral equation

1.1 1 > > >
(1.1) > i‘p_l =2e(r), Teaq,
a lo- r|
wheve Q is a vegion. Then
372 2/3 2/3
(12) ( V2] 8] , as n >,

wheve | Q| denotes the volume of @ . In a previous paper [1] a proof of this theorem,
based on the theory of Brownian motion (Wiener measure), was sketched.

It is the purpose of this paper to prove an analogous theorem for integral equa-
tions of the form

.)
¢(p) > >
(1.3) f . wzdp =a¢(r) (O< a<2).
)

Unlike in the case (1.1), there is no equivalent formulation in terms of a differential
equation. The method of proof will be illustrated on the one-dimensional case, and
to obtain a somewhat more general result we shall consider the integral equation

a
dGIVE) 4. _
(1.4) J Y- Ao(x),

where V(y) is a continuous function bounded away from 0, that is,
(1.5) Vy)>m>0, (-a<y<a).
To avoid complications of a minor nature we shall consider (1.4) only for o < 1/2,

indicating later how this restriction can be removed. The final result is given by
formula (4.3). The proof will be an adaptation of the argument used in §11 of [1].
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. 2. PRELIMINARIES

Let x(7) (x(0) = 0) be the stable process of exponent 8 =1 - a, and let X 5(x)
be the characteristic function of the set A c(-a, a). We consider the integral

o0
(2.1) S E{e
0
for u > 0.
Following the derivation of §11 of [1], we get

(2.2) y = JwE{(StV(x + x(T))d‘T)k XA(x + x(t))}dt

t
-u S Vi(x + x(1))dT

Xa (X + x(t))} dt

a v Vv eV
= k!DkH(B)S dx, ., S j ) V) Ve dx -+ dxy,
A R L N e A N W N
where
_1 ®cos 7
(2.3) D@ - ,HXO L.

Let pu,, yy, +++ be the eigenvalues and wl(fc), wz(x), ++- the corresponding normalized
eigenfunctions of the integral equation '

(2.4) D(g) ———W Yy)dy = i yfx).
We get

® () | yi®)
2.5) s 3k (VY o e
( "k j=1 3 SVV(Y) Ty

A

and consequently

t
-uS V(x + x(7))dTt )

% 0 &y i) . &)
2.6 E- dt = J 3V v X .
(2.6) j o {e Xalx + x(t))} j§1 i uuj§ Vo) y e

The passage from (2.5) to (2.6) requires a word of justification.

For sufficiently small u the justification is clear. Considering u as a complex
variable with %tu > 0, we note that both sides of (2.6) are analytic functions of u.
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Since they agree for sufficiently small positive u, they agree for all u with %tu >0
and hence for all positive u.

Let now

. .
2.7 NG t) = Prob{ S Vi + x(T)dr <7y, x+ x(t) € A}- .

The left side of (2.6) can be rewritten in the equivalent form

J j e~%Ydy oly; t)dt = j e-%Y d{jwo(y; t)dt‘j},
|
4] 0 0

while the right-hand side is clearly

jme”qu{- E ; e Y/ S %(Y) dy Wj(x) }
j=1

o0

)]

. AT R AT
Thus
© ° /i) Y;(x)
(; t)dt = C - e VH | T g ,
J, L e Y e

and clearly

C= roo(oo; t)dt.

[

Finally,
% ® /s (YY) | sx)
(03 B) - oly; Dldt = = pye ¥/ Hi| T8 gy DI
L Lo 7t 0] j=1 He AVVe) W@
or
00 t ’
J Prob{f Vi + x(7)d7m> v, x+ x(t) € A}dt
2.8) ° °

v/ (¥5O) ay Y;(x) .
AI/V(y) VV)

0
= U-je

J=

—

Some of the steps above were purely formal, but the justification is quite easy.
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3. PASSAGE TO CONDITIONAL PROBABILITIES

Let now A be the interval (x - & , X+ & ). The condition x + x(t) € A becomes
now -&< x(t) < &, and we can rewrite (2.8) in the equivalent form

t
Prob{ S Vi + x(T)dr >y, —e < x(t)< € }
SwProb{—£<x(t)< e} 0 - dt

2¢ Prob{-t <x(t)<e}

(3.1)

® v/ 11 e wsily) | Yx)
- E . Y/I'LJ__];_ lpJ d J .
j=1 Eh 2¢ xSi VYVi(y) y\/V(X)

We must now show that

t
Prob{ S Vix+ x(r))dr > v, - € <x(t)<¢ }
]

(3.2) lim
£>0 Prob{- e <x(t) <¢e}

exists.
Let

Prol;{ St V+ x(T)dr <y, -¢ <x(t) < ¢ }

Prob{-&¢ <x(t)< e}

Fe 7) =

It is easily shown that

t k
E{(S Vix+ x(T))dT) e <x(t)< e}
® 0

lim g yKdF. (y) = lim
£>0 ) ¢ £>0 Prob{-e < x(t)< ¢}

exists and is clearly less than (Mt)X, where M = sup V(x) (-a < x < a). It thus fol-
lows that limg 5, Fg (y) exists (in the usual sense of convergence of distribution
functions) and hence limit (3.2) also exists. It is natural to set

t
(3.3) l,c_li_;r(t) (1 - Fe W) = P‘rob{ S Vix + x(T))dTZ Y | x(t) = 0}.

0

Since the kernel
___‘|V(x _)‘Iix(y)eLz (-a<x<a,-a<y<a)
X-y

and its first itérélté is clearly continuous we have, by Mercer’s theorem, that
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o
25 () ¥5(9)
converges absolutely. Since
eV Hj< A s,
it follows that
P
iy /M g ) w3 6)

converges absolutely. Hence (3.1) can be written in the form

o t
C(B) J t'l/B Prob{g Vx + x(T))dT_>_ Y ] x(t) = O}dt

0 0
(3.4)
13 v/ i 2
= Yy = M R Z(OF
for
1
Ell_irb—é—i—Prob{-€<x(t)<E}
.1 (¢ 1 (% -t]e]f igx 0\ L -1/8
with
o B
(3.5) C(B):%S et ar .
o

Should the reader become disturbed by the fact that t-1/8B is not integrable near
t = 0, he should notice that for

t<y/M (M= sup V(x))

we have
t
Prob { j Vix + x(r))dr> v | x(t) = O}: 0,
0

and hence the integration in (3.4) does not actually extend to 0. A simple change of
variable transforms (3.4) into the more convenient form
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. 3 t
C(B)'yl-l/ﬁ 5 t"l/B Prob{g Vi + x{ym))dr > 1 | x(yt) = O}dt

0 0
1 v/
= . ) s
Ve = e I,
which implies immediately

= v/ U
Zouge

(3.6)
a

. o] t
-c(g)yl-1/B S t-1/Bat j V(x) Prob{s Vix+ x)dr > 1 | xtot) = O}dx.
-a o

0

Intuitively,
. 1if tV(x)> 1,
(3.7) lim Prob{g VE + x(y7))dr >1 I x(yt) = 0}:{
>0 o 0 if tV(x) < 1.

It is (3.7) and similar formulas which are the heart of the probabilistic approach to
the problem of distribution of eigenvalues. For the Wiener process (Brownian mo-
tion) the analogue of (3.7) is what I called-in [1] the “principle of not feeling the
boundary” and which has been most thoroughly justified and employed by D. Ray in
[2]. For stable processes the proof of (3.7) is still very simple, because of the
strong assumptions we imposed on V(x). In fact,

E { St Vix + x@y7)dr | xyt) = 0}

0

t ~o0 .
S g Vi + n)Py; y7)P@; vyt - 7))dndr

_ _Yp Y=

P(0; yt) ’

where

P(y; t)=§1; S eigye"f‘g‘ﬁdﬁ,

-0

and it follows almost immediately that

t
(3.8) lim E{S Vix + x(yr))dr] x(ot) = 0} -tV ().
Y>>0 o

Similarly it follows that
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(3.9) ) lim E{( V(x+ x(y7))dr ) Ix(yt) = }: 2Vae(x) .

v>0

Now, clearly (3.8) and (3.9) imply (3.7).

4. CONCLUSION OF THE PROOF

From (3.6) and (3.7) we obtain that

-a 1/v(x)
c(8) J " VBl ax
_ -a 1-1/8
/-1 L4

as y>0, and hence by Karamata’s Tauberian theorem

a

C(B)S v'/Bx) ax

4.2) Z Wi - —-— p Bt (e,
et T WD TR

Since
c(g) = ;1[; r(1/8),

formula (4.2) can be written in the simpler form

i Sa v/ Bix) dx

Z Ky~ ul/ﬁ‘l

1_ ’
1/u<# A

and since the pis form a decreasing sequence it follows, in the same way as at the
end of §11 of [11, that

Z 1~1S I/B(x)dxp./B
/p<p "

or

(4.3)
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To remove the restriction o <1/2, we note that if 1/2 < o < 1, a sufficiently
high iterate of the kernel of (2.4) is in L% The proof can now be carried out by con-
sidering instead of (2.1) the expression

t
w0 -u( S V(x+x(7))dr
S E< e 0 Xax + x(t)) >dt ,

0

where { (depending on «) is sufficiently large so that the corresponding kernel is LZ2

In conclusion it might be mentioned that PSlya and Szegd [ 3; p. 29,formula 19]
proved that

1 2)
_g/2 P{/2)(x) r( ).
@6 o | - T e TR R i<y <,

where the P’s are Jacobi polynomials. Thus for
V)= (1-x9P2 -1,
we have

r'n+ a)

Hn = Tn+ 1)’

and it is easily checked that (4.3) holds. Our proof is not strictly applicable to this
case, because here V(x) is not bounded from above. However the proof could be
modified to include such cases provided, of course, V(x) does not become infinite
too strongly. )
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