A THEOREM ABOUT MAPPINGS OF A TOPOLOGICAL
GROUP INTO THE CIRCLE

R. L. Plunkett

1. INTRODUCTION. If S is the unit circle topological group with complex
multiplication as its operation, and if G is a compact topological space, then the
collection of mappings of G into S with the compact-open topology is a com-
mutative, metric topological group. For f, and f, in SG, the product f,-f, is the
mapping defined by the relation

[f,-£,]&x) =f,®)},(x), for all x ¢ G,
and the inverse f~! of any f ¢ SC is defined by the relation
[£2)x) = [f&)]1, for all x € G.

The identity is the mapping f, defined by f,x)=1. A metric p for S is that de-
fined by p (z,, 2,) = |2z, - 2,|, and the metric p* for SCG may be defined by

p*(, g) = sup p [f(x), g&x)].

Following Eilenberg [1], a mapping f ¢ SC is said to be equivalent to 1 on a sub-
set H of G (f ~1on H) provided there exists a mapping ¢ : H> R, the real line,
such that f(x) = exp[i #(x)] for all x e H. Two mappings f and g in SCG are said
to be equivalenton Hc G (f ~ g on H) provided f-g-! ~1 on H. It is shown in [1]
that ~. is an equivalence relation, that .f G is a separable metric space, then f ~ g
if and only if f is homotopic to g, andthat P(G) ={f]fe 89, £~ 1} is algebraic-
ally a subgroup of SS. In [1] and here also, if |z, - z,| < 2, [z,, z,] denotes the
signed angle less than 7 through which the radius to z, must be rotated in order
to coincide with the radius to z,.

It will be shown in this paper that P(G) is an open subgroup of SC when G is
compact, and that the factor group SG/P(G) is isomorphic to the character group
of G when G is a compact, connected, commutative topological group satisfying
the second axiom of countability. A corollary to this result is the fact that every
mapping of such a topological group G into S is homotopic to an interior mapping.
This corollary is analogous to a result of G. T. Whyburn [2].

2. With reference to the remark which follows, observe that the function [z,, z,],
for z, and z, in S and |z, - z,| <2, is continuous and that exp(i[z,, z,]) = z,/z,.

(2.1) If G is a compact topological space, P(G) is an open subgroup of SG.

Proof. Suppose, for some ¢ P(G), that g is a mapping such that p*(, g) < 2.
Then, for each x ¢ G, [f(x), gix)] <w. Since f~1on G, there exists a continuous
® : G>R such that f(x) = expli¢(x)], for all xe G. Let ¥ : G> R be the function
defined by

Received by the editors July 19, 1954,

The material presented here is a part of the author’s dissertation, written at the
University of Virginia, June, 1953,

123



124 R. L. PLUNKETT
Y (x) = ¢ )+ [{(x), gx)], for all x ¢ G.

Then Y is continuous and

exp[ipx)] = exp[ig(x)] exp(i[f(x), gx)])
= £(x) [gx)/f(x)] = gx), for all x € G.

Therefore, g ~1 and P(G) is open.
Thus B(G) is a discrete topological group when G is compact.

It will be assumed henceforth that G is a compact topological group satisfying
the second axiom of countability. The following three theorems are listed for refer-
ence. The first is an easy consequence of theorems in [3]. '

(2.2) If G is connected and commutative, and if U is a neighborhood of the
identity in G, then theve exists a subgroup H of G such that Hc U and G/H is
isomovphic with the divect product of a finite number of copies of S.

(2.3) If 1€ S5, then there exists an integer p such that f ~zP on S [1].

(2.4) If X and Y ave continua and { is a mapping of X XY info S such that,
Sfor some (%5, ¥,) e X XY, f~1 on X X(y,) and i~ 1 on (x,) X Y, then f~1
on X xY [1] ‘

Considering the character group G* of G as the group of all homomorphisms
of G into S, define a function F: G* >B(G) as follows: for h e G*, let F(h) be
the element of B(G) containing h. This function is clearly single-valued, alge-
braically a homomorphism, and continuous.

(2.5) LEMMA. If G is connected and commulative, then F is an isomorphism
into. '

Proof. Suppose h, € G¥ and h, € G¥ are such that h, ~h,. Then h,/h, =g is
a homomorphism and, since g ~ 1, there exists a continuous ¢: G->R such that
gx) = exp[i ¢(x)], for all xe G. Since gle) = exp[i p(e)] = 1, where e is the iden-
tity of G, ¢(e) = 27k, for some integer k. If k # 0, define @' to be ¢ - 2;rk. Then
@¢'(e) =0 and explig'(x)] = g(x), for each x € G. Hence it may be assumed that
é@E)=0.

Now exp[ig(xy)] = glxy) = g(x)g(y) = expli(g(x) + ¢(y))], for all x and y in G;
hence @(xy) - [@(x) + d(y)] = 27rn(x,y), where n: G X G>1, the integers. Since n
is continuous, 7(G x G) is connected and, since 7 (0,0) = 0, n(x,y)=0. There-
fore ¢ is a homomorphism and ¢(G) is a compact, connected subgroup of R;
hence ¢(G)={0}, and g(x)=1. Thus h, =h,, and F is one-to-one.

Consequently F~! is single-valued and is continuous, since B(G) is discrete.

(2.6) LEMMA. If G =S XS X *=* XS (afinite number k of copies of S), then
¥ is an isomorphism onlo.

Proof. Suppose first that k = 2. Corresponding to f € SS"S, let £, =f|8 x (1)
and f, =f] (1) X S. By (2.3), there exist homomorphisms h,~ f, and h, ~ f,. De-
fine h: S X S> S by the equation h(x,y) = h,(x)h,(y). Itis easily verified that h is
a continuous homomorphism; i.e., he (§ X 8)*. On S x (1), f/h =f,/h, ~1 and, on
(1)x 8, f/h =1f,/h, ~1. By (2.4), f/h ~1 on SX S, so f~h. Thatis, F is onto.

On the assumption that ¥ is onto when G=S XS X -+ xS (k-1 times), the
completion of the proof by induction is similar to the preceding step and is omitted.



MAPPINGS OF A TOPOLOGICAL GROUP 125

(2.7) THEOREM. If G is a compact, connected, commutative topological group
satisfying the second axiom of countability, then B(G) ~ G*.

Proof. It must be shown that F is onto; i.e., for fe€ SG, an h e G* must be
found such that h ~f on G. With a metric for G with respect to which transla-
tions are isometries, there exists a 8 > 0 such that, if D c G is of diameter less
than 4, then f(D) is of diameter less than 1. Let U be the §/2-neighborhood of
e € G and (invoking (2.2)) let H be a subgroup of G such that Hc U and
G/H=S XS X+ X8 (k times). Let aa: G >G/H be the natural mapping. Define
g: G/H>S as follows: for a point [xH] of G/H, let g([xH]) be the midpoint of
the smallest arc of S containing f(xH), where xH ={xh|h ¢ H}. The choice of H
ensures that g is well-defined.

To show that g is continuous, let F = gat, let {x;} be a sequence of points of
G converging to x € G, and let € > 0. There exists a ¥ > 0 such that xs;h € N, (xh)
implies f(xjh) € N [f(xh)], for each h e H. Let M, be the ¥ -neighborhood of a point
Yo = xh, (h, € H). Then y; = x;h, >xh, =y, and, for some integer I, it is true that
i >1I implies xjh, € M,. If, denoting by y; the point xh, we translate M, by
ynyo!, then, for each h e H, yhy;'M, contains the points ynys'yj, for i > 1. But
volyi = hy'x~x;h, = x~1%x;, and hence y,y;'y; = xx™'x;h = x;h. Therefore, x;H is
contained in a ¥ -neighborhood of xH and f(x;H) is contained in an €-neighborhood
of fxH), for i > 1.

Let xh, and xh, of xH be such that f(xh,) and f(xh,) are the endpoints of the
smallest arc of S containing f(xH). There exists an integer I, such that i > 1,
implies f(x;h,) € N.[f(xh,)] and f(x;h,) € N [f(xh,)]. Now, if i > I+ 1,, then
f(x;H) « N[f(xH)], £(;H) - N [f(xh,)] # ¢, and f(x;H) N [f(xh,)] # ¢. Hence the mid-
point of the smallest arc containing f(x;H) is within € of the midpoint of the small-
est arc containing f(xH), when i is large enough, and F is seen to be continuous.
Since o is open, this implies that g is continuous also.

Furthermore, gaa~f on G because ¢(x) = [f(x), ga(x)] is continuous and
exp[igp(x)] = ga(x)/f(x), for all x e G. By (2.6), there exists an h ¢ (G/H)* such
that h~ g; i.e., there exists a ¢"G/H >R such that h(y)/g(y) = expli¢'(v)], for
all y € G/H. Therefore, ho(x)/go(x) = expli¢'a(x)], for all xe¢ G and
ho ~gd ~f. Since ho is a homomorphism, this proves that F is onto. By (2.5),
F is an isomorphism, and the proof is complete.

(2.71) COROLLARY. Every mapping of a compact, connected, commutative
topological group satisfying the second axiom of countability info S is homolopic fo
an intevior mapping.

Proof. By (2.7), if fe SO, then there exists an h € G* such that h~f on G.
Then h is interior, since it is defined on the compact G; and by a previous remark
it is homotopic to f{.
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