A THEOREM ABOUT MAPPINGS OF A TOPOLOGICAL GROUP INTO THE CIRCLE

R. L. Plunkett

1. INTRODUCTION. If S is the unit circle topological group with complex multiplication as its operation, and if G is a compact topological space, then the collection S^G of mappings of G into S with the compact-open topology is a commutative, metric topological group. For f_1 and f_2 in S^G , the product $f_1 \cdot f_2$ is the mapping defined by the relation

$$[f_1 \cdot f_2](x) = f_1(x)f_2(x), for \ all \ x \in G,$$

and the inverse f^{-1} of any $f \in S^G$ is defined by the relation

$$[f^{-1}](x) = [f(x)]^{-1}$$
, for all $x \in G$.

The identity is the mapping f_0 defined by $f_0(x) \equiv 1$. A metric ρ for S is that defined by $\rho(z_1, z_2) = |z_1 - z_2|$, and the metric $\rho *$ for S^G may be defined by

$$\rho^*(f, g) = \sup_{x \in G} \rho[f(x), g(x)].$$

Following Eilenberg [1], a mapping $f \in S^G$ is said to be equivalent to 1 on a subset H of G ($f \sim 1$ on H) provided there exists a mapping $\phi : H \rightarrow R$, the real line, such that $f(x) = \exp[i \phi(x)]$ for all $x \in H$. Two mappings f and g in S^G are said to be equivalent on $H \subset G$ ($f \sim g$ on H) provided $f \cdot g^{-1} \sim 1$ on H. It is shown in [1] that \sim is an equivalence relation, that if G is a separable metric space, then $f \sim g$ if and only if f is homotopic to g, and that $P(G) = \{f \mid f \in S^G, f \sim 1\}$ is algebraically a subgroup of S^G . In [1] and here also, if $|z_1 - z_2| < 2$, $[z_1, z_2]$ denotes the signed angle less than π through which the radius to z_1 must be rotated in order to coincide with the radius to z_2 .

It will be shown in this paper that P(G) is an open subgroup of S^G when G is compact, and that the factor group $S^G/P(G)$ is isomorphic to the character group of G when G is a compact, connected, commutative topological group satisfying the second axiom of countability. A corollary to this result is the fact that every mapping of such a topological group G into S is homotopic to an interior mapping. This corollary is analogous to a result of G. T. Whyburn [2].

- 2. With reference to the remark which follows, observe that the function $[z_1, z_2]$, for z_1 and z_2 in S and $|z_1 z_2| < 2$, is continuous and that $\exp(i[z_1, z_2]) = z_2/z_1$.
 - (2.1) If G is a compact topological space, P(G) is an open subgroup of SG.

Proof. Suppose, for some $f \in P(G)$, that g is a mapping such that $\rho * (f,g) < 2$. Then, for each $x \in G$, $[f(x), g(x)] < \pi$. Since $f \sim 1$ on G, there exists a continuous $\phi : G \rightarrow \mathbb{R}$ such that $f(x) = \exp[i\phi(x)]$, for all $x \in G$. Let $\psi : G \rightarrow \mathbb{R}$ be the function defined by

Received by the editors July 19, 1954.

The material presented here is a part of the author's dissertation, written at the University of Virginia, June, 1953.

$$\psi(x) = \phi(x) + [f(x), g(x)], \text{ for all } x \in G.$$

Then ψ is continuous and

$$\exp[i\psi(x)] = \exp[i\phi(x)] \exp(i[f(x), g(x)])$$
$$= f(x) [g(x)/f(x)] = g(x), \text{ for all } x \in G.$$

Therefore, $g \sim 1$ and P(G) is open.

Thus B(G) is a discrete topological group when G is compact.

It will be assumed henceforth that G is a compact topological group satisfying the second axiom of countability. The following three theorems are listed for reference. The first is an easy consequence of theorems in [3].

- (2.2) If G is connected and commutative, and if U is a neighborhood of the identity in G, then there exists a subgroup H of G such that $H \subset U$ and G/H is isomorphic with the direct product of a finite number of copies of S.
 - (2.3) If $f \in S^S$, then there exists an integer p such that $f \sim z^p$ on S [1].
- (2.4) If X and Y are continua and f is a mapping of $X \times Y$ into S such that, for some $(x_0, y_0) \in X \times Y$, $f \sim 1$ on $X \times (y_0)$ and $f \sim 1$ on $(x_0) \times Y$, then $f \sim 1$ on $X \times Y$ [1].

Considering the character group G^* of G as the group of all homomorphisms of G into S, define a function $F\colon G^*\to B(G)$ as follows: for $h\in G^*$, let F(h) be the element of B(G) containing h. This function is clearly single-valued, algebraically a homomorphism, and continuous.

(2.5) LEMMA. If G is connected and commutative, then F is an isomorphism into.

Now $\exp[i\phi(xy)] = g(xy) = g(x)g(y) = \exp[i(\phi(x) + \phi(y))]$, for all x and y in G; hence $\phi(xy) - [\phi(x) + \phi(y)] = 2\pi\eta(x,y)$, where $\eta: G\times G\to I$, the integers. Since η is continuous, $\eta(G\times G)$ is connected and, since $\eta(0,0) = 0$, $\eta(x,y) \equiv 0$. Therefore ϕ is a homomorphism and $\phi(G)$ is a compact, connected subgroup of R; hence $\phi(G) = \{0\}$, and $g(x) \equiv 1$. Thus $h_1 = h_2$, and F is one-to-one.

Consequently F^{-1} is single-valued and is continuous, since B(G) is discrete.

(2.6) LEMMA. If $G = S \times S \times \cdots \times S$ (a finite number k of copies of S), then F is an isomorphism onto.

Proof. Suppose first that k=2. Corresponding to $f \in S^{S \times S}$, let $f_1=f \mid S \times (1)$ and $f_2=f \mid (1) \times S$. By (2.3), there exist homomorphisms $h_1 \sim f_1$ and $h_2 \sim f_2$. Define $h: S \times S \rightarrow S$ by the equation $h(x,y)=h_1(x)h_2(y)$. It is easily verified that h is a continuous homomorphism; i.e., $h \in (S \times S)^*$. On $S \times (1)$, $f/h=f_1/h_1 \sim 1$ and, on $(1) \times S$, $f/h=f_2/h_2 \sim 1$. By (2.4), $f/h \sim 1$ on $S \times S$, so $f \sim h$. That is, F is onto.

On the assumption that F is onto when $G = S \times S \times \cdots \times S$ (k - 1 times), the completion of the proof by induction is similar to the preceding step and is omitted.

(2.7) THEOREM. If G is a compact, connected, commutative topological group satisfying the second axiom of countability, then $B(G) \approx G^*$.

Proof. It must be shown that F is onto; i.e., for $f \in S^G$, an $h \in G^*$ must be found such that $h \sim f$ on G. With a metric for G with respect to which translations are isometries, there exists a $\delta > 0$ such that, if $D \subset G$ is of diameter less than δ , then f(D) is of diameter less than 1. Let U be the $\delta/2$ -neighborhood of $e \in G$ and (invoking (2.2)) let H be a subgroup of G such that $H \subset U$ and $G/H \approx S \times S \times \cdots \times S$ (k times). Let $\alpha \colon G \to G/H$ be the natural mapping. Define g: $G/H \to S$ as follows: for a point [xH] of G/H, let g([xH]) be the midpoint of the smallest arc of S containing f(xH), where $xH = \{xh \mid h \in H\}$. The choice of H ensures that g is well-defined.

To show that g is continuous, let $\overline{F} = g\alpha$, let $\{x_i\}$ be a sequence of points of G converging to $x \in G$, and let $\epsilon > 0$. There exists a $\gamma > 0$ such that $x_i \in N_\gamma$ (xh) implies $f(x_i h) \in N_\epsilon$ [f(xh)], for each $h \in H$. Let M_γ be the γ -neighborhood of a point $y_0 = xh_0$ ($h_0 \in H$). Then $y_i = x_i h_0 \rightarrow xh_0 = y_0$ and, for some integer I, it is true that i > I implies $x_i h_0 \in M_\gamma$. If, denoting by y_h the point xh, we translate M_γ by $y_h y_0^{-1}$, then, for each $h \in H$, $y_h y_0^{-1} M_\gamma$ contains the points $y_h y_0^{-1} y_i$, for i > I. But $y_0^{-1} y_i = h_0^{-1} x^{-1} x_i h_0 = x^{-1} x_i$, and hence $y_h y_0^{-1} y_i = x x^{-1} x_i h = x_i h$. Therefore, $x_i H$ is contained in a γ -neighborhood of xH and $f(x_i H)$ is contained in an ϵ -neighborhood of f(xH), for i > I.

Let xh_1 and xh_2 of xH be such that $f(xh_1)$ and $f(xh_2)$ are the endpoints of the smallest arc of S containing f(xH). There exists an integer I_1 such that $i>I_1$ implies $f(x_ih_1)\in N_{\epsilon}[f(xh_1)]$ and $f(x_ih_2)\in N_{\epsilon}[f(xh_2)]$. Now, if $i>I+I_1$, then $f(x_iH)\subset N_{\epsilon}[f(xH)]$, $f(x_iH)\cdot N_{\epsilon}[f(xh_1)]\neq \phi$, and $f(x_iH)\cdot N_{\epsilon}[f(xh_2)]\neq \phi$. Hence the midpoint of the smallest arc containing $f(x_iH)$ is within ϵ of the midpoint of the smallest arc containing f(xH), when i is large enough, and \overline{F} is seen to be continuous. Since α is open, this implies that g is continuous also.

Furthermore, $g\alpha \sim f$ on G because $\phi(x) = [f(x), g\alpha(x)]$ is continuous and $\exp[i\phi(x)] = g\alpha(x)/f(x)$, for all $x \in G$. By (2.6), there exists an $h \in (G/H)^*$ such that $h \sim g$; i.e., there exists a $\phi':G/H \rightarrow R$ such that $h(y)/g(y) = \exp[i\phi'(y)]$, for all $y \in G/H$. Therefore, $h\alpha(x)/g\alpha(x) = \exp[i\phi'\alpha(x)]$, for all $x \in G$ and $h\alpha \sim g\alpha \sim f$. Since $h\alpha$ is a homomorphism, this proves that F is onto. By (2.5), F is an isomorphism, and the proof is complete.

(2.71) COROLLARY. Every mapping of a compact, connected, commutative topological group satisfying the second axiom of countability into S is homotopic to an interior mapping.

Proof. By (2.7), if $f \in S^G$, then there exists an $h \in G^*$ such that $h \sim f$ on G. Then h is interior, since it is defined on the compact G; and by a previous remark it is homotopic to f.

REFERENCES

- 1. S. Eilenberg, Transformations continues en circonférence et la topologie du plan, Fund. Math. 26 (1936), 61-112.
- 2. G. T. Whyburn, Interior mappings into the circle, Duke Math. J. 11 (1944), 431-434.
- 3. L. Pontrjagin, Topological Groups, Princeton University Press, Princeton, 1946.

Florida State University