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for an n-gm in Wilder [13], we obtain (E) from (B) and (C). In the last
section we shew how our homology invariants are connected with the con-
cept of "avoidability'" introduced by Wilder. Our results shew that (D)
above includes certain results of White [20].

1.1. We continue to use essentially the notation of LTI, recalling
that x is-a:fixed point of a locally compact subset. M of Hilbert space,

with neighborhoods U,V, ... . It will be convenient also to add this: if

* . :
H is a finitely generated Abelian group then we shall write an isomor-

phism of the form

k. ok X
Hx=M(k) + F
\)\_giphout repeating that the R. H, S. consists of the ciirect sum of a module of
rank k and a finite Abelian group. Further, the symbol F, with or

without suffix, will always denote a compact subset of M.

2. éECH AND VIETORIS HOMOLOGY. If X is any subset of M,
we defined  7f '(X) in LTI as the rth Vietoris homology group of X,
where only cycles and homologies with compact carriers are considered.
Similarly the Cech group H (X) is defined. Now if F < F' <X, there
exist injection homomorphisms ’

in(F, F') : ]@,I{I(F) - Jg;l(F'), N=c, v
so that we have the direct limit, (see Wilder [13] p. 247)

# N(X) = Dir Lim {H(F), in(F.F) L,
where the F's run through all FC X .

Since F 1is a compact Hausdorff space, there exists an “ isomor -
phism

Lg: H(F)= HF),

by Begle ([14] p. 536). Given [a]e€ J¢T(X), and a'€ [a], then there
exists F ¢ X such that a'€}fT(F). Define {x[a] to be [LF a'l].
Then, since

Cpiiy (F,F') = io(F,F') bp

it can be verified that the definition of CX is independent of the choice
of a'e[a], and that ‘

{x: HyX) = HIUX)
Now suppose that. X <Y <M, andlet jy be the injections
2.1 in : LX)~ R, N=c v,

Then, since CYJV = Je CX’ we have
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2.2 HJXIY) = ix]Y)

where ngllr(le) = jn HN(X).  Hence, if  €I(x) denotes the
v
Cech analogue of €i{x), we have

2.3 Cz(x) exists if and only if Cz(x) exists; and then

CS(X) = CL(x)

Let G be the set of homology coefficients. We recall the following
definitions (cf. LTI, 4.1).

2.4. DEFINITION. The space M is r - 1len(G) (N =v,c) at x
if and only if there exists ‘a neighborhood function AL (U) such that, given
Ul U, satisfying Uz & A r(Ul) then every Vietoris ((\Ifech) r-cycle on
U, is ~ 0 on TUj. M is then 10&((}) at x if and only if M is
p -len(G) at x, 0<p<r; and M is lef(G) if and only if it is leN(G)

at all its points.

" The definition réquires Lhat Z@N(UZIUl G) = 0. Hence, itv follows
from 2.2 that M is r - lcy(G) if and oaly if M is r - lcc(G). Cech [1§]
has proved

2.5. If M is 1c&(I) then it is lcz(G) for every discrete Abelian
group G.

We shall also need the following theorem, in wh1ch G is assumed to
-be either I or a field,

2.6. THEOREM. Let F l)_e_a_g compact subset of a separable metric
1cI(G) space, and let > 0 be given. Then there exists a finite set of

r-V-cycles, I'i*, ..., T'x"™ on U(F,a) such that every r-V-cycle
I"T on F satisfies a homology of the form
T~ _5:11 g; If on U(F,a), g;€G.
PROOF. When G =1, this is Newman ([10] Thm. 1). When G

is a field, the theorem holds for Cech cycles, by Begle ([14] Corollary
2.3). Hence J{ L(F|U(F,a)) is a vector space of dimension at most k,
and so by 2.2 the same is true of %S(F]U(F‘,a - The theorem now
follows.

3. THE '"j;'" GROUPS. Suppose that M is lcy(I), and that a
finitely generated group C((x,I) exists at x. With U),U, asinLTI, Def-

inition 6.1, we have
r,— — r

where we suppress I for the moment. Let [T}, ..., [Fpr] be a

©All complexes are taken augmented. (See LTI, Footnote 9).
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basis for %5(1—12 - x| Uy - x), and for each i(l1 <i < p) choose T e[rr]
* : i i

-with compact carrier Fj. Let m be the first integer such that

V =U(x, 1/m) @ Uy — L_) F;
i=1

Then, if [T is an r—V—C}}cle on V -'x, there exists a homology of the
form

P
T o . r T3
r" :Z::::l ni l—'i on Ul - X,

and therefore

3. 1. Every r-V-cycle on V - x is hom010gous, on Ul - %X, {0 an
r-V-cycle on UZ - V. .

Given V' and W 'such that xeWEV'CV, let
§= min (o(W, V), o (Tp UL, | '
where f denotes complementation. Since U, is compact, sois U, - V';

and . ) )
U -V'eU(Uz - V', 8) €U} -W.
Since § > 0, then by 2.6, ]fr(UZ Vv'|U; - W) is finitely generated,
and so it is of the form (see 1. l) ' ‘ ‘ '
3 %k
M(k) + F
If W'C W, then fj—l - W 561 - W', andglgv the methods of the proof of
LTI 6.6, there exist Wg, kg <k, -and ¥g5 such that
— — - 3 %
76 I(Uz - v'[U) - W)= M(kg) + Fo

when W'& Wy We assert, moreover, that
. r,— —_ T - .
3.2 ji KUy -V |U] - W)= H (U - VU] - %),

where j is the injection homomorphism. For if I'T is an r-V-cycle on
U, - V', such that ' —~0 on F'cC U; - %, let P be such that
»e PEW, - F'. Then, by definition of W, ‘ ‘

HEX(T, - v'|T) - W)=ZL(T, - v'|T] - P).

Since these groups are finitely generated and Abelian, it follows by LTI
5.3, that TT~ 0 on U; - W'. Hence j is univalent, and since it is clearly
""on', the isomorphism (3.2) is established.

Now V depends on U), Uz, while W, depends on Uj,U,,V'; write
V = V(Uj1,Uy), Wg = Wo(U;p, Up, V). Decfine the neighborhood  functions
Ug‘ s Sr(U)’ gr(U, ar), Sr(U, U', U') to be, respectively,

U}; » vy (U), V(U,U'), Wo(U,u',u").
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Since I"';%, ... , I pr' are on 62 -V', then #5(62 A |YI_J—1A-fx)’:: Cg(x) ;
and therefore, by 3.2, we have proved: .

3.3. If U,;,U;,, U3, Uy satisfy the relations

then

gy T . — r

H ((Uy - U3[U} - Uy) = €Cy(x)
A similar result is obtained when 1 is replaced by a field, and we are led
to give the following definition, applicable to a general coefficient group G.

3.4. DEFINITION. M has the group O (x,G) at x if and onlyif
there exist a neighborhood Ug' of x _and functions '

$§*(u), 8&%(u,u'), 8&%(u,u',un),

such that, whenever U;,U,, U3, Uy satisfy the conditions
Uy UL Up,c8™(Uy), Uz £ 87(Up,Up) Usgs 8°(Uy, Uz, Us3),

then the relation
= oped o on T
# (U - U3]|U; - Uy, G) = 2D ((x,G)
holds.

When G =1 or a field we may state 3.3 as follows. -

3.5. THEOREM. I M is 1cI(G) and if’ a finitely generated

€Cy(x,G) existsat x, then D [(x,G) exists also; and

- Cy(x,G) = DL G) -

The converse result will be investigated in Section 5. Note that 2.6 im-
plies the following.

3.6. Suppose that M is 1lcy(G) andthat 2DT(x,G) exists, If

G = I, then 2 I(x,I) is a finitely generated group; if G is a field, then

D %(x,G) is a vector space over G of finite dimension.

Let 2D 1;:(, x, G) denote the éech analogue of 3.4.- By 2.2, we - have
immediately from 3.5,
3.7. D S(X,G) exists if and only if D g(x,G) ~exisfs; and then
r —~ -
D §(x,G) = D IL(x,G) (for every discrete G).

When G is a field, we can relate the "" groups to the local Betti
numbers (see LTI 3.1) by the following theorem, whose geometrical content
is that of 2 "Theorem of Alexander Type'. 4

3.8. THEOREM. Let G be a field, andlet M be r - lc(G) and

(r + 1) — lcc(G) at x. Then there exists a finite local -Betti number

3 When speaking of vector spaces, we sometimes use "finitely generated”
to mean "of finite dimension'.
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pr+1(>i,-(.§) 1_f and only if- "~ D (%, G) ‘exists as a vector space over G of

finite dimension d¥(x,G); and then

. pr+l (x, G) = df(x,G) .
‘l PR\OO‘F.A' Let Uo be any ne1ghborhood of %, such that ‘(—Jo s
compact. Using the notation of 2.4,let Uy, U2, U3, Uy be given to satisfy
+1
(i) U; S Ng (Ug) Upg X (Ul) Us& Uy, Us€Usy;
we shall later impos.e further ,res\trlctlons upon them. First, however, we

shall prove that .
;Zfr"”(Uo UO-U3|U0 S Uy) & (UZ-U31U1 —U4)

. . ; r+l — .
where the L.H.S. decnotes the-injection of K (Uo,Uo —U3) in

%z+l(ﬁo,ﬁo - Ug). -(Throughout the proof, we omlt explicit mention
of G). ) - » ) S i
Let U,V, ..., denote finite open coverings of the compact set
50' By Wilder ([13] VII 1. 10), each U has a reflnement V such that .if
the nucleus4 of a suanex of the nerve of V meets both U3 and Uo - U3,
then it meets FU3. Hence, the family Z ' of such V is cofinal ‘in

the family 2 of all'finite open coverings U of Up. We may therefore

always assume! that all homology groups are taken with respect to I
*
Ues' and C(U) is a chain on U, le’t
(U) = Cy(U ) ¥ Cz(U)
where C1(U) conSLSts of all cells of C(U) ‘whose nuclei meet U3. In

particular, if’ Tortl o ={ I'_H(U)} is a Cech cycle mod U() - U3° on Ug,
then ‘

(ii) 2 or LGy - r L) = T,

and since the L. H S. consists of cells on4 [i/\ (Up - U3) while the
R.H. S is on Ua U3 , then each side is on JUjz, by definition of =

3

sk
Let V € 2' be a refinement of U, and let # denote projection from V

to U . Then, since 1_.r+1 is an (r+l)-cycle mod ﬁ-o - Uz, we have an
equation of the form

+1 +1, % R U NS D

G - AT = 2O + T

r+2 : : : * = r+ly sl
where C (U) is an (r+2)-chain on U.Ugp, and C (U) is a chain
on ETA(I—J—O - U3). Therefore :

4 For definitions of the various concepts in this proof, see Wilder [13],
"V §7.
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r+l1 ,* r+1 , %
AR WAL

' 2, % * * +1,%
% — —
so that {Flr+1(U) } is a cycle mod U, - U3 on U;. But
d*k * 3%

+1,% +1,% r+l
=a(r1‘” (U)-nry " (V))g 2C,

E 3

(U);

also, 3Tl ™1 i on F#U3, and Cr+1/\U3 is on U3n(U0 - U3) =7U3y
therefore each side is on #Uj, Hence {T r"'I(V)} is a cycle mod FUj

on Us. Since 79 =97 , we have
3k Sk
'aI—\lr+l(U) - Warlr‘l'l(v)
+1,% 1,%* 1,*
= ac," N O) + [2c," D) - (T,HND) - 7 TLTHH)Y.

The L.. H. S and the term in square brackets are on JFU3; hence, so is
d Clr"'](U) Therefore

* ' * % %
A 1r+1(U) - 73Tl 1r+1(v) = a(cr+l(U) _ <r2r+l(U) _Wr2r+1(v))).
sk .
ie., oI Tl = (ar T}G)) =30 [F*1 s a Cech cycle on

FU3 E_{]—Z - U3

L, %
Suppose that I''T'tl = (r'rtl()} is a second (r+l) - cycle
mod UO - U3 on UO , and that prHLL Pl g9 Up - U4 on ﬁo
Then if U es', an equation of the form

r r+1(f§) o rH(d) = act(D) + cr(D)
holds, where ' .
cr+2(U) is on U/\UO and C” 1(1"5) is on 5,.(170 - Uy).
Hence, .

+1, %

! %k %
(iii) or, THHW) - or FPNU) - 2c,"tHU)

r+l * 'r+1 * r+l *
By the usual argument, each side is on FUj, - and so

'r+l1, * r+1

(iv) 9l (u) - 3F1r+1($) = 93C (U) + (R.H.S. of (iii) ) .



68 C Griffiths

* % -
Since C1r+1(U) is on Un(Ujz - Uy), the R.H.S. of (iv)is on
Thus . ,
oo T+l S+l —
¢l T ~ ¢l T on Uj - Uy

Now ¢ is clearly additive and linear, and therefore the corre-

spondence of cosets )
¢*: [ rr+1] - [ ¢ I—-r+l]
defines a homomorphism

+l= — = —
o*: HITNTo.To- U3|To - Ug) ~ H (U2 -U3|U; - U4),

which we shall now prove to be an isomorphism.

¢* is univalent. For, suppose that ®*[ I r+1] = 0. Then
¢ TTtl = 3 v+l ~ 0 on U; - Uy By Wilder ([13] VII 1.6), there
exists an (absolute) (r+l)-cycle r':6+1 on Uj, such that

["‘or+l ~ F1r+1 mod ﬁ-l - Ug on 51 .
But Uj = ) Z+1(U0) by (i) above, so that r‘ol‘+1~0 on Ug; hence
r™le 0 mod Uy - Uy on U
Thus, for each G € Z' we have an equation of the form
reHl(G) = 2 cTHR(0) ¢ cTHD)

* * * *
where CTt2(U) ison UaUp and ctt(U) is on Una(U; - Uy). Hence

* r ko ‘ ~ % 2 * * 'i'l %
r r+l(U) - ]—-‘1 +1(U) v 0 5+1(U) - acr+ (U) + Cr+1(U) *rzr Q) ,

i. e.
’ ' * — , —
rr+l - {1 r+1(g)}~0 mod U} -Ug on Uy
i.e., b * is univalent.
We now prove that ¢ * is 'on''. Suppose that

r — —
PP e[r 7] e (T, - U3|T; - Uy -

Then 'Y is on U, - U3 € Up; and since Uz € Ae(U) by (i), T~ 0O

on Uj. By Wilder ([13] VII 1. 3], there exists a cycle '+l mod I—J-Z - Usz
—_ _— ES

on Uj; such that ar‘r+1~ rt on U, - Uj. Therefore, for each U e ',

< 5k < —
> rTHU)~ rT(U) on UA(T, - Us3).
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% +1 +1
But or TFL(U) - or ] (U) =ar }

(U) (by (ii) above), i.e.,
% % *
ar r+l(g) ~ar ‘1'+1(U) on Ua(U; - Us3)

and so I'T ~¢Fr+1 on ffl - U3. _ This proves that gi)* is ion't as

asserted, and therefore
+1 —— — JT(TT —
* LU Uy - U5l Ty - Uy) = J2 (0, - U3| U - Uy) .
By the method of LTI 3.2, et. seq. we may therefore write

(v) I (M M - UM - Uy) = U0z - U3|T) - Uy) -

Now suppose that 7Dg(x,G) exists and is a vector space of di-
mension dFf(x,G) . Besides imposing the conditions of (i) above on

Ul) UZ) U3) U4 s

let us suppose further that they satisfy the conditions of Definition 3.4, and
that U], Uy are the first suitable sets of the form U(x, 1/n). Then we may
assume that the R.H.S. in (v) above has dimension dY(x,G). Define the
functions U;'H ,  «TH(U) of LTI 3.1 to be, respectively,

s¥(U,U2), 8%(U;, U2, 0) .

Then, since the L.H.S. of (v) is of constant dimension dY(x,G), it
follows that the local Betti number pr+l(x,

G) exists at x ,and is equal
to df(x,G), as required. «

Conversely, suppose that prtl(x,G) exists at x and is finite, so that
LTI 3.1 is satisfied. 1If to the conditions of (i) above we add the further
conditions that Ug = U’,'('H, U3z & Ur‘H‘ and U4 & K r"'1(U3) we may
assume that the L.H.S. of (v) has dimension prtl(x, G). Let
Ul = >\§+1 (Uttl) and sT(U) = AEI(U), let 8T(U,U') be the first set
of the form U(x,1/n) € U', and let §¥(U,U',U") = «TT1(U"). Then, since
the R.H.S. has now the constant dimension pr""l(x,‘G), the conditions of
Definition 3.4 are satisfied. Therefore @g(x,G) exists at x , and

dr(x,G) = pttl(x,G) as required. This completes the proof.

3.9. REMARK. In the proof, we have used the ”EXLStence Lemmas"
of Wilder ([13] VII §1). Together, these lemmas state that the Cech homo -
logy sequence, with coefficients ina field, is exact at the places we require.
Hence our proof of (v) above is valid for every set of coefficients whose
homology sequence has the same exactness property.

4. A LEMMA. In order to use integer coefficients, we shall have to
prove a lemma concerning Vietoris cycles. First, we give the following
useful definition of local connectivity.
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4.1. DEFINITION (Begle [1] Def. 1.1.). M 1is r-lc at x if and
only if, given U and € > 0, there exist V and n = 7¥(U,€ ) > 0 such

that every r-cycle on vin] is ~0 on Ule]. M is 1cP at x if and

only if it is r-lc at x, ~ 0<r< p; and M is 1cP if andonly ifitis

lcP at each of its points.

If the coefficients form a ring with a unit, Begle provesin Theorem
3.1, op. 'cit., that M is 1lcT if and only if it is lc‘l;. (Although he as-
sumes M to be compact, his proof requires only obvious modifications
when M is locally compact.) ' ;

4.2. With U as in 4.1, ~let the first satisfactory V }of the form
U(x, 1/m) be denoted by A T(U). Then our lemma is as follows.

4.3, LEMMA. Let M be both r-lc and (r+l)-lc at x. If U,
U}, Uz, W are neighborhoods such that U1 & aTtl(U), Uz< AF(U)},
and W& U, then for every r-V-cycle r'r on T.Tz—-W there exists an
r-V-cycle yI'T on FW suchthat I'T ~ yI'f on U3 -W.

PROOF. Let TI'T = {I'T(em)} bean r-V-cycle on ﬁz -W. The
idea of the proof is this: we shall construct an r-V-cycle {r'(e! ) such
that, for each m, I'T(epm)~'(e},) on U; -W, and ['(e)) is on
U(FZW, $m), &m —0. We shall then project each I"*(e'm) into
r'"(e i) (say),' on FW, where I''( ei'n)N (e ) on GI—W and
{1 "(e 'r'n) } is also an r-V-cycle , namely the required I'T. The de-
tails are as follows.

Let Y)r(E) = Y]r(Uls €) nr+l(e) = v]ril(U,e) as in 4. 1. The

cycle "T= {I'%(ey}} isan r-V-cycle on U, - W, so that for each

m >1 we have an equation of the form5

(i) THem) - T me1) = DTFY3y) on U, - Wi €, >0, §m 0.
By choosing a subsequence, if necessary, we may suppose that
emtl £ em< 77 (8m)

$ mil < .,71'+1(3m) (<5 )
5 m < 8o/2mtl, 5, < TH(5,),

50 < a = min(P(x,é’W),p(W,;Uz)) .

Since U, € AT(Uj); we have for each m2>1 an equation®

5C,D,... , with or without suffixes, denote general (finite) chains
with coefficients in the group understood. CT(€) denotes a chain of di-
mension r, and of mesh < € . The notation is more fully explained in
LTI, 7.7.
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(i) ‘ FT(em) = €™ (sy) on Ty, .
. so. that Cr+1l( s pn41) - CTHL( 5m) + DEH1(s ) is an (r+l) - cycle " Yon
(UI[Sm] But Uj c AT+1(U), and ‘hence - S
(iii) ct+l(s 1) - ct+l(s ) + D5 ) = acTtE(5,, ) on T.
For each n > 1, define Wp to be U(W,a/2R),” Wqo = Up. Also,” let
: $2
Cr+2(8m) = Cll""'i { Sm) + Cr (Sm)
(iv) 1 +1-
. Cl‘+1(8m) = CTTH (Sm) + Cr (Sm) 2
where in each equation the suffix "2'' denotes the part consisting of all’
cells whose vertices are all on W,. Then, by (ii),
(v) Ff(em) - 3CItl(s) = oC3 . (6m)»

and both sides must be on (I-J—l - W)UU(@Wn, Sm). If m > n, then
‘ 8m< 8, < a/2ntl
and therefore

(vi) FT(e ) - r+1(8m) = acll'frll(sm) on Uj-W.
From (iii)

r+1 r+1 r+2
ci*l(s 6 ) - dciti(s

m+1) - C2.a ml)

+2 +1 1 +1(5 '
d3CT a8 m1) - [DTF(s )+(:r+ (5m+1) c{n )]

"

2
Bcr+ (Sm 1) -C (S m): Say,

Since the L..H.S. is on W’n,' so is the R.H.S. But the R.H.S. consists
of cells on the boundary of r+2(3 m-1)» and therefore it is on

U(Jwﬂ’ Sm—l)

Hence, .

(vii) 9CE*L(5 py1) - FCE A5 m) =3[3CTV2(5,, 1) - X5 )]
on U(FW,, &n-1)

If m>n+1, then §m-1< 65< a/20tl; let

FE={T )y ={3c3* i3 ), m>n+1).
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Then we have proved that f'; is an r-V-cycle on ‘VTfn -Whnta- From -

(iv), ‘ 4
+1 r+1l r+1 _ r+1 r+l
C™ (5 m)=C1, n(5m)+C2,n(6 1) =C1,ns1(8, )+ C2, ny1{6m)-»

whence -

r+l r+l r+1 r+l
CZ,n(Sm) - c:2,n+1(3r1’1) = C1,n+1( Sm) - Cl,n(sm) .

If m>n+ 1, both sides are on W -W , and so
n nt2

r+1 _ r+1 ' = r+l - crt! o |
(viii) 3 Cz,n(sm) 2 CZ,‘n-’rl(Sm) B(CI’HH( 5 ) Cl,n( m) )
on Wn - Wp42. Therefore I'n ~ I'ntl on W, - Wpyp, while from (vi)

rr o~ r‘; on I—fl - W. Hence,for each n and all m , we have equations
of the form

(ix) Pem) - TEXnm) = 3C{Ly) on Tp -W,
(x) Falnm) - T Es1lnm) = 3C'(g! )on W -W_ .o,
where

im { m=lim g =0.

For each xefj—l -W, choose a point of FW nearest to x and denote
itby ¢ '(x) . Then, forall ¢>0, p ' defines a transformation ¢ of

the chains C(e) on Uj - W into the chains C(e') on JFW, where
e'< 28 + ¢ if C(e) is a chain on U(JW,8). Itis easily verified
that ¢ is simplicial and commutes with 9 . Together with (ix) and (x),

the theory of projection prisms then gives equations of the form

(xi) eFmlnm) = vrme1(ame1) = 3C(Bm) on IW,
(xii) Pm(Mm) - ¢k m) = 3C(glh,) on Wy, - Wiy
where lim 8y = lim ,Br'n =0 since lim o«/2™*! = 1im 7m = 0.

Hence by (xi), yr' T = U :‘n(nm)} is an r-V-cycle on FW.
By inductionon r, n<r<m, (x) and (xii) give ~

I "(em) -y mlnm) = 3C(pn)) on L_11 - W,
where lim B mo= 0. Therefore

r'rr\'l#rr on ﬁl'w:

r

and yr is the cycle we require.
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From equation (iii) of the last proof, it can be shewn that the sequence
{CcTtl(s )y of (ii) is an (r+l)-V-cycle mod U, - W on U] . Thus,
with the help of similar techniques, the !"Existence Lemmas' of Wilder
(see 3.9 above) can be replaced by weaker statements, for any suitable dis-
crete G, in order to prove the "G" version of Theorem 3. 8.

In the last two proofs, we have depended greatly on the process of
dividing a chain into two portions - each being still a chain. This process
is the geometric counterpart of the Excision property, and we therefore
cannot expect strictly analogous homotopy versions of the proofs (see LTI
Section 3).

5. M"SOURCE AND SINK!" THEORY. Roughly speaking, Lemma 4.3
states that, under the given conditions, every r-V-cycle sufficientlynear
to x is homologous, on a subset of M - x, to an r-V-cycle even nearer
to x. On the other hand, 3.1 states that, under the conditions given there,

every r-V-cycle sufficiently near to x is homologous, on a subset of
M - x, toan r-V-cycle further away. To use a hydrodynamical picture,

for the moment: x acts in the first case as a sink for r-V-cycles, and in
the second case as a source. We now study the source property further.
Throughout, I denotes the group of integers; Q denotes the field of
rationals. The following lemma will be useful.

5.1. LEMMA. Let F, F', F" be compact sets in an 1cP(I) separa-

ble metric space, and let qo,8, > 0 be such that

FCU(F,a)cF' CUF,3)CF".

Suppose that 6

K S(FIAF'»I)?& HE(F|F", 1) = ﬁ[(k)f B

Then the vector space %S(F‘F", Q) is of dimension k.
PROOF. The proof is divided into five parts.

(A) It will be convenient to let Fj, denote.” . KU(F, a). The
proof of Newman [10] Theorem 1 shews that! if G =1 or Q, then for
every § > 0 there exists a sequence {e, }n > 0), depending on F and
5 , such that 0 < ep41 < €p/3, for all n, and such that the following
three conditions are fulfilled:

(i) If ZT is an r-cycle over G on F[e;], then ZT is the first ele-
ment of an r-V-cycle pT ={Z%(cp41)} over G, on Fg . Denote 'T by
v(2T), v = v(G). Then, also ‘

v (2] + Z3) = v (z])+ v (z})

6 See 1.1.
7T X = closure of X.
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B (ii) - F has a finite open covering by sets of diameter less than 54/6
‘with nerve K( ¢ F[e 1].), such that, if ZY, ..., Z{ is a hombplogy ‘basis
f0r8 HT(K,G), then every r-V-cycle I'T over G on F satisfies a
homology ot the form o S )

k
Tr
re o~ E.I gi ¥ (2]) on Fg + g;¢G-

(iii) A sufficient condition that two r-V cycles ['F = {zI] on F
(i =1,2) be homologous on Fy (over G) is that for all4 n >0,

1
(a) - : Zin - Zir,r1+l = 3Cf+ ‘(En-l-Z) on U(F,7,),
where n
M=, z_ €m and n>0,
m=0 '
+1
(b) ~ z](0) - 25(¢ ) = 3C " (e ,) on U(F, € g).

(B) The function v =y (G) in (i) defines .a homomorphism of
HY(K,G) in ]{s(F',G). For if 1<i<p and Z'T~ZT on K, then
since €4/3 =mesh k< ez, we may apply (iii) with § = o, to give
2Z'T ~22% on F, £ F'. Hence we may without ambiguity define

v'[ZT] to be [¢¥Zr] and extend v', by the additivity of v in (i), to be
the required homomorphism

v' (G) = ¥': HY(K,G)~— # o(F', G).
Now, if [T is an r-V-cycle on F , there holds a relation of the form
rr_s ?::1 gi »(z{) on F<F', whence
k -k
(iv) [rr] =1 17:1 giv(zd] = »'[ ,E—l giZi ]

Let i be the injection of %5(F|F',G) in Jo(F',G). Thenby (iv)

v'HY(K,G) = i J{s(FIF',G).
(C) Since K is finite, we may express HY(F',I) as a direct sum
(see 1.1): : ,
HT(K,1) = M(p) + B .
Let a homology basis of HY(K,I) be the set of cycles

r r r r
21s oo s Zpy Z5.4s --v s 2
sk >k
where Zi, ..., Z; correspond to M(p), and the rest to P. Then it

8 H denotes the combinatorial group.

‘
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may easily be verified that le' s e s Z;‘ generate HT(K,G), since K
is finite; and moreover than any homology "

p r ,

P riZ; ~ 0 over Q on K, r; € Q.

i=1 : x

implies r; =0, 1 <i<p.
(D) It follows from (B) thatif N is the kernel of v'(I), ~ there
exists an isomorphism
| HY(K,1)/N = ZI(F|F'.1),
by Noether's Theorem and the fact that i is univalent. We may assume

that the basis ZJ, ..., ZF of HY(K,I) is chosen so that, for certain in-
tegers m;, 1<i<n, the set mIZf, cee ngIr1 is a basis for N. Since

HY(K,I)/N = f\kd(k) + F

by the hypothesis about ]{S(F"IF',I), we must have m; =0, 1<i < k,

(assuming the ZT suitably numbered).

(E) If 1<i<k and vg = V'(I), then v3(Z])# 0 over Q on
F'. For suppose on the contrary that VO(ZII') ~0 over Q. By (i),
yO(ZIi) is a sequence of the form {ZT(e . ;)}; hence for each n there
exists a &, lim 8, =0, and a chain Cr+l(‘3n) on Fg[8,],such that
Z%(eny1) = 2CTH(5,) .

In (i) - (iii) above, replace F by F', and & by B ; let {!} be
the corresponding € -sequence. ILet & be the common denominator of

all coefficients in CTt1( §0). Since Zf(el) is non-zero and has co-
efficients inI, & £0. Let {$ 'l be a sub-sequence of {8 ,} such that
$' < €'ny2 for each n; and let T['' = {ZzT( € n42)} be the corresponding
subsequence of {ZT(e,;;)} . In (iii), replace G,¥, §, by 1, F', B
and take '] and '} to be al’*  and zeyo, respectively. Then
a "'~ 0 over I on F,’e' C F", and so CLVO(Z}‘)~0 over I on F't,

But by hypothesis
r ' L3 %k
;t{V(FlF'.I) ~ H(F|[FD) = M(k)+F ,

whence avo(Zi-)~0 over I on F', by LTI, 5.3. Now

r r
av O(Zl) ~ volezZy) ,

so that a ZY € N; therefore a =0, since my; =0 . This contradic-
1 1

tion establishes the assertion that VO(Zir) + 0 over Q on F', 1<ic<k.
A similar argument shews that any relation of the form
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M

r
1 Y0 (zi)mo over Q on F', r;eQ,

implies ri =0, 1<i<k. Thus, the set VO(Z. ) , VO(ZII;) s
linearly independent relative to homologies over Q on F'. By (C)
Zl’ e Zk form a homology basis for HY(K, Q).

Since M is 1lc®(I), itis 1c¥(Q), by 2.5, and we may there-

fore suppose that ¥(I) and v (Q) agree when applied to Zl’ e, Zli

Applying (ii) with G = Q, we conclude that VO(ZE), cees volZy)
- form a homology basis for HEF|F', Q).

Hence, the vector space %S(FIF',Q) is of dimension k, as re-
quired.

5.2. COROLLARY. Let the r-V-cycles ]“Ii-, cee s 1"11;, FLI;+1’ ceo

'L on F be any set of generating cycles for %5(FiF’,I) , such that
L

ri, ..., T 11; correspond to  M(k) . Then T i‘, +e.» I'f arealso a

set of generating cycles for HIL(F|F', Q).

PROOF. From the first isomorphism in part (D) of the proof above,
it follows that o(z]), ... ,vp(Z}) form a set of generat1ng cycles of

the direct summand of JHG(F|F',I) corresponding to M(k) Hence there

exists a unimodular matrix (ujj) of integers such that

P

Pi ~ Z uiJ Uo(zlj) over I on F', i :l,.,_’k.
j=1
Hence
\ k ,
r.o~ S UO(Z‘JT) over Q oan F', i=1,...,k,
L J:l
and therefore, since Vo(Z]i.), e VO(ZII;) form a set of generating cycles
for H s(FlF’,‘ Q), (by part (E) of the last proof), so do r‘i‘, cee 1“11;

5.3. COROLLARY. If F is the whole (lc¥(I) ) _space, and if
A+ 3% ' C
Ho(F, 1) = M(k) + F,

then dimension %S(F, Q) =K

The '",O" groups have the advantage of being expressed in terms of
compact sets. The "C'" groups, on the other hand, have the advantages of
being easier to define, and of being associated with the ''source! property
of 3.1. We now show that the groups are often interchangeable, and we
require the following lemma. Let G be such that 3.6 holds.

5.4. LEMMA. Suppose that M is lc’(G) and that a  group
D E(x,G) exists at x. When Uj =UY and Uz € $T(U7), suppose
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that V = §T(Uj, U,) is such that the '"'source" property 3.1 holds,
viz: given a cycle ¥ on V - x, there exists a cycle ¢I'Y on GZ -V

such that

‘1

r

r
Then a group C€y(x,G) exists, and €J(x,G) = O (x G)

~ qbrrg_gffl-x.

PROOF: Given Uzr €V, choose Uy such that
Uy €U, M $T(U,, U, V) .
By 3.6, & ™(x,G) is finitely generated, since M is lcy{G). Hence,

D I(x, G) = HE(T, - V|T, - Uy, G) = HYT, - V|0 - x.G),

by the same argument as for 3.2. Let I"II' and I"E be r-V- cycles
on ITZI -x €V -x. Then by hypothesis there exis‘t cycles ¢ 1"11' and
¢ '} on U, -V, suchthat I' { ~¢T"{ (i=1,2) on T, -x.  Hence,
if T']~ I'; then ¢ M[~¢ "7 on U -x sothatwehave a ho-
momorphism

¢ *: FIT, - x|U; - x,G) =~} (U, - V|U; - x,G),

defined by ¥ ] =[] . If ¢*[r T] =0, then

0 ~ ¢ T~ T on ffl -x,
so that ¢ * 1is univalent. ]ez(ﬁz" - x| fJ-l - %, G) is therefore isomorphic
to a subgroup of the finitely generated Abelian group D 7(x,G).Hence, by
LTI, 6.6 (or by an obvious adaptation of it when G is a field), a group

€¥(x,G) exists and is isomorphic to a subgroup of qu(x, G). But by 3.5

the existence of a finitely generated (L‘S(x, G) implies that
Do(x,G) = Ci(x, G):
as required, since ) 5(x, G) is obviously unique to within isomorphism.
We can now prove the following theorem with G as above.

5.5. THEOREM. Let M be Ic¥(G), and let M be (r+l)- lc (G)
at x. If agroup D T(x,G) exists, then so does a group Cy(x,G) and

the two are isomorphic.

PROOF. Since M is 1lcy(G), in particular itis r-lc(G) at x
by Begle ([1] Theorem 3.1). By hypothesis, it is also (r+l) - lc(G) at
x. Let £ ¥(x,G) be given, withassociated § -functions, and let U}, U}, U,
be arbitrary neighborhoods such that



.78 L . Griffiths_ ..

PR I IR . A - B D s -
R | PR P [ .1, R B M-S I A

‘ Ul%,h,rH(Ug)‘ﬂU'z > U1 cuy

UzC}\ S e i (U;), U3€ s (U, Up).-

Let W be any neighborhood such that W < U3 and let U3 ,U4, U4 be
arbitrary except that Ug < v Sr(Ul, U,, U3) and U4 & Uy, U3 E@W. Then
by definition -

DY G) m HYU2 - U5| U - Uy, G) = HYT, - U3 | Ty - U4, G)
(1) = Ly : .

" . ot — 4
=~ H (T, - U510, - Uy G) = HE(T, - WIU1 - 1{4,0)

leen an r-V-cycle I"'T on UZ - U3, there exists, by 4.3, an ' T- -V- cycle
\pl" on FW such that '~y 't on Ul—WCUl—U4C U1 : U4~.,.
Since  is additive, we therefore have a homomorphism
i) A JC{,(Efz - U3|U] - Uy.G)~ Jé’r(fwlﬁl - U4, G),
defined by the correspondence ¢*[I r] = [t,b"f"r]‘ between COSets More -
over, if y*[1"¥] =0, then ¢y 'Y~ 0 on UI—U4, ie., [rr] =0, and
therefore ¢ ¥ is univalent. Since JW C UZ - U3, it follows that:-. .~
H (JIWIUl S U4.G) S HET, - U3 T - UysG) € H (U - U4,G)

Thus from (i} we obtain,
* — —
ﬂo g(x, G) ~ Y %5([12 - U3,U1 - Uy G)
< R FW|T) -U4 )
(iii) ‘ _ S
: r

‘ < LU, - U3|U} - Uy, G)
= DGy

Suppose now that G is a field A. Then, by 3.6, & y(x,A) is a
vector space of finite dimension over A; and so it follows from (iii) that

(iv) HL(FW]|UT - Uy, A) = H (T2 - U3lffi - Uy, A),

since a finite dimensional vector space has no.proper subspace isomorphic
‘to it. Hence ¢* is ''on", i.e.,

(v). for every r-V-cycle Fr over A on FW, there exists a  cy-
cle 0" ¥ over A on UZ - U3 such that T O8rr over A -on I—J—I - U4 .

Next, let G =1. Then LD Y(x,I)  is finitely generated Abelian, by
3.5. A comparison of ranks and finite parts in (iii) therefore gives
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(vi) HE WU, - U, 1) & D ¥(x, 1) ,

and so the periodic parts of

— 2, — 1 —_
KE(FW|Ty - Ug 1) and ¥ 5Tz - U3|0) - Uy, 1)
are equal, since they are finite. If [T is an r-V- cycle on El - Uy
such that there exists an integer p #Z0 for which prt. over 1 on

Ul - U4, let us call [T 'periodic'" on Ul - Uy. Since

, =
W - U3 9_ Ul - U3 >
the remark after (vi) yields the following result:

(vii) for every integral r-V-cycle [I'T which is periodic on FW,

there exists an integral r-V-cycle 6I'T on Uy - Usy such that T~ @ I'T
over I on l_fl -U2.

If an r-V-cycle on Ul - Uy 1is not per10d1c let us call il "free'' on
Ul - Uy4. To extend (vii) to the free cycles on UZ - U3, we proceed as
follows.
Since ¢ * ;ng(ﬁ_z - U3|ﬁ-1 - Ug4,I) is a subgroup of the finitely
generated Abelian group j{g(}Wlﬁl - Ug,I) and both are isomorphic to
r . r r r r W,
A ¢(x,1), there exist cycles [ 17 e Ty ", say,on 7

and non-zero integers mip,...,Mmq such that

%5( 3W|GI - Ug, 1) is generated by [T li], ..., [T :;] ,

— — r
"b*%s(uz - U3|U) - Uy, I) is generated by [m, I"ﬁ, cee s [mp T ),
where [° f, e PII; are free on 61 - Uy and the rest are periodic. For
each i =1, ..., n, there exists a cycle A{ on U, - U3 such that
ry .
[mj r'f] = p¥Aai], i.e.,
' —

(viii) mi | = yA{ ~ AY over I on U)-Uy.

By applying Cofollary 5.2, we may moreover assume that

(ix) Jfg( FW|U, - Ug, Q) is generated by [r 11‘]', cees [I'"II;]I ,
and that

Y* ]65(62 - U3]U; - U4, Q) is generated by [ 11.]', R A 11{-]' ,
where the prlmes refer to cosets over Q . Since Q is a field, and

FIWcC U, - U3 there exists by (v) a matrix (rjj) of rationals such that
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k —
r T s
(x) I'"i ~ jzzl Tij o) over Q on Ujp - Uy, i=L, ..., k.
From (viii) and the fact that I € Q, it follows that
k -
l"i.r —~ j=Z1 rij mJ r‘g over Q on U]. _U4, izl, Y k.
But r'll' , » T 11; are linearly independent relative to (Q-homologies

on U] - Uy, by (ix); and therefore

ri; mj = §ij (Kronecker delta), i,j =1, ... , k.
Hence, since mj ;é 0, y=1, ..., k, we must have
mjz-l_-l, ji=1 ..., k;

and

i

rij Sij.i,jzl,...,k.

We may clearly take the mj's tobe +1, so that (viii) and (x) mustbe

identical. More important to us, however, is the fact that both now re-

duce to
(xi) ‘ Affv 1"{ over I on I_Jl - Uy
so that * is "on'". Since every integral r-V-cycle rr on W

satisfies a homology of the form

n
rre -~ iz——-:l qj P’; over I(gqj€ I)on U; - Uy ,

there exists by (vii) and (xi) an integral r-V-cycle 60T on U -Uj3 such
that

(xii) rr= ¥@rr) ~erf on U; - Ug ,

and therefore on~ 61 - X.

Now let G be either a field or I, andlet ['' be any r-V-cycle

over G on F C I-:T-3 - x. Let W be such that xe¢W C 173 - F. Then

T~ @t on Uj - x, where \Iu[_'r ison FW. By (v) if G is a
tield, or by (xii) if G =1, there exists an r-V-cycle 0(yp[T) over G
on U, - Uz, with the property that 8(yI"'F)~ ¢I" T on Uj - Ug. Hence
T~ 08(yI"T) on Uy - Ug. But Uz = §T¥(U1, Uy) by definition, so that,
if we write [ t= (¢ l_'r), the conditions of LLemma 5.2 are satisfied.

Therefore €I(x,G) exists at x, and

Cg(x, G) = D z(x, G) -
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This completes the proof.

We do not know whether or not analogues of 3.5 and 5.5 hold for
every group of coefficients. '

6. MANIFOLDS. In this section we shall use our local invariants
to define manifolds, and we shall then apply the previous results. We
should expact a space M to be "smooth" by the standards of, say, the "'"g¢"
groups, if and only if the "C'" system cannot detect any difference between
M and locally Euclidean space of the same dimension. Guided by Ex. (1)
of LTI 6.5, we therefore make the following definitions, in which M is
locally compact metric and G is the set of coefficients. The suffix "N" is
to be taken to be ''c'" or '"v'' according as the Cech or Vietoris forms of
the definition are required; and n is non-zero.

6.1. DEFINITION. M is an "n-dimensional? homology CN mani-

fold over G, " and denoted by 2(€nN,G), if and only if

1. dim M =n ;
2. M is 1leR(G) s
3. ateach? x¢M, Ck(x,G)={(s""1,G), r=0,1,2,...

6.2. DEFINITION. M is an '"n-dimensional homotopy €~ mani-

fold!"denoted by 7™(C), if and only if

1. dim M = n;

2. is LCnR;

3. at each xe M, CI(x) = #»F(s®1), r=0,1,2,...

g

In order to connect with Wilder's work on manifolds, we need the

following result:

6.3. LEMMA. Let dim M<n, let F be a compact subset of

M, and let dim; F denote the Lebesgue dimension of F. Then

dim F<n

PROOF: From the relation FC M it follows, by Hurewicz-Wallman
([19] Thm. 11,1, p. 26), that dim F < dim M. Hence, dim F<n , and
therefore, since F is compact, dim ) F<n (by Thm. V.8, p. 67, op.cit. )

With I the group of integers, we then have

6.4. THEOREM. An 7U%C~) is an 7M€y, 1)

PROOF: 1f the locally compact space M is LCR, then it is
lcg(I), by Hurewicz ([18] Thm. 7). For all® r and n, F(s-1) is
Abelian, so that by LTI, 7.4, 7.5, and 7.6, Cz(x, I) exists at each xe M

and is isomorphic to Cil(x), 0<r<n-1. But

9 Menger-Urysohn dimension.
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€ (x) = #(s" N=#is™ ), 0<r<n-1.

Hence, it remains to shew that Glg(x, I) exists and is zero when r >

5

Let U; be a neighborhood of x, with the property that L—I-l is
compact. By 6.3, dim 1(6-1) < n, and so every Cech (n+1)-cycle on Uj
is trivial. Hence M is (r+l) - lcc(I) at x, and therefore M is ICE(I)
at x for all p > 0. Hence, by 2.2, M is 1c€(1), and therefore 1cP(I)

at x, (see 41). Suppose that U; & ATl and U, S A%U,) (where
the A's depend on x, of course). Then, if '™ is any n-V-cycle on
F < U, - x, let W be a neighborhood of x such that W &€ U, - F. By

4.3, there exists an n-V-cycle \pl"n on FW , suchthat ™ <y ™ on

[_11 -Wc I-I-l - x. Since dim M. < n, we may assume dim FW < n. Hence
dimj; #W <n, by 6.3, and therefore the Cech Igroﬁp H (FW) is zero.
But HE(FW) = X FW), by 2.2, and so yI'*~0 on JWEEI - X.
Therefore [T® ~0 on [_Il - %X, so that ¢3(X, I) exists and is zero. For
any Fc L-I_I -x, dim; F s_nl since dim M < n. Hence, HE(F) =0  for

all r > n, and therefore we may use 2.1 and 2.3 to get

r, - r,—
HAT) -x) = L (T -x) =0,
whence (Cs(x, I) exists and is zero for all r > n, as required. This

completes the proof.

6.5. Example (iii) of LTI, 6.5, shews that the converse of Theorem
6.4 is false.

6.6. DEFINITION. Letus call M an mn(DN,G) if and only if
it satisfies the conditions of 6.1, but with "E'" replaced throughout by

Ilb" . ' ~

From 2.3, 2.2 and 3.7, we have, for any discrete G,

6.8. THEOREM. M is an m™d,,G) [Mm™Cy,G)] if and only if
itisan ™D G) [m™(e., G

If G is a field or I , then by 3.5 and 5.5 (since an 1lc® space
of dimension < n is lc™ for all m > n), we have

6.9. THEOREM. An 7™C,.G) is an 7™ & ,,G) and conversely.
Next, we have ’

6.10. THEOREM. Every z; ™D,.I) is an 70Dy, Q).

PROOF: If M is an 7WY(D,I), then it is 1c§ (I) by definition,
and therefore lcg(Q) by 2.5. Let xe M, and let r be a fixed
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integer, Q < r <n. Let Ul’ Ujps.. UZ’ U3, U4, U4 be nelghborhoods of x
sat1sfymg the followmg condltlons (see 3.4):

U, € v} cut Uz ¢ 87(Up)nsT (U

s ’
Uz 57U U2) A ST(UY, U2)s
- Ug e 8 7(U1, U2, U3) $7(UY, U, U3): VU;C‘- Uy -
Then, by the definition of r(x, I) and of mn S § |
HTz U310, ~VU4,I)~;IZV(UZ - U3| T - U 1) < (s L),
‘In 5.1, take F,F', F.”“ to be, respectlvely, UZ.',‘,U?;’, ,UIV‘UA.’. ‘[—I'lil- U'4v with
o < p(02 - Us, BT -Ug), = o (U) - Uy ¢(T1 - Uy)) -
Then H5(Up - U3|Uj - UgaQ) = £T(SP71, Q), and therefore:.” D i(x, Q)
exists at x and is isomorphic to %r(sn 1, Q). Hencée M ‘is an m,n(;Z)V,Q)

as requ1red

6.11. The converse is false. I"'or let péotl pe o (2n+l) - dimen-

sional pro_]ectlve space, let P2n+1 be the cone of base PZ“‘|'1 and vertex

q, and let P2n+1 be a copy of PZYH'1 w1th vertex qo- Let
, 4 ‘

» . : - A . .
where the bases of P20tl and Pgn"'l are identified. Then M 1is com-
pact end orientable over I and over (). At all points éxcept q 'and qo

M is locally Euclidean, and at q, qg it is locally contractible.

It can be shewn that at g the groups L (g, G) exist for all-'G and
v
r=0,1,2, ..., and that :

DI(a,G) = HI(PPHl G)
Similarly at q5. Now?, Hopintl 1) =o. geL(P?ntlq) is cyclic of
order 2 if r is odd, and JE(P2Mtl 1) is zeroif r is even, while
Hentl(p2ntl 1) s cyclic infinite (see, e.g., Seifert-Threlfall [11]p.119).
Hence, M is not an 'm2n+l(g?)‘\,,1). However, by 5.1, the above state-
ments about ']fs(Pzn'l'l,l) yield

st(Pzn—*-l’Q) = 0’ r 201 1, ..., Z2n;

#E PPl Q) ~ Q.

and therefore, for all r > 0,
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Doa Q) = Di(a0, Q) = = AYPAPHL Q) = 7T (P, Q-

This proves that M is an m2n+1(pOV,Q), and the requlred counter -

example is established.

Let us call M an . 7.™p, G) if and only if it is an n -gm in the
sense of Wilder ([13] VIII p. 284), and is separable metric. Then

6.12. THEOREM. If G is 'afield, then M is an (D, G) if

and only if M is an 7®(p,G)

Proof: By definition, an m™( D, G) is 1cg(G), and in particular
1c2(G). Hence, if x € M, it is easily seen thatZ pOo(x,G)=0, If r
is fixed, 0<r<n, then & Z(x, G) exists and is ~ J S(S™ L G); it is
therefore of finite dimension d¥(x, G). From the fact that M is r-lcc(QG)
and (r*1) - lcc(G) at x, it follows by 3.8 that pT+l(x, G) exists at x
and pr*+l{x,G) = d¥(x, G). Hence M is an yn2(p, G). Using 3.8 in the
opposite direction, we prove similarly that an 2(p, G) is an ‘MF’(@C,G).,
This completes the proof.

If M is compact, it is orientable over G if and only if

JC%(M,G) ~ G. We shall require further that M satisfy condition "D
of Wilder ([13] VIII 3, p. 250), viz:

6.13. If F is a proper closed subset of M, then an(F] M, G) =0.

For such a space M, we can prove 2 weak*form of the Poincaré
Duality Theorem, as follows. If %5(M’ I) = M(k) + F, we define pT(M,I)

to be k; if J£T(M,G) is a vector space over G, we define pF(M,G) to be
dimension (j{S(M,G)) .
6.14. THEOREM. If M is a compact and orientable ,°(:0,.1)
satisfying 6.13, then
pY*(M,I) =p*"'(M,I), 0<r<n,

P*(M,I) =p°(M,I) + 1= 1.

Proof: By 5.1, p'(M,I) = pr(M,Q), 0< r<n, and by 2.2,
v
pr(M, Q) is equal to its Cech analogue pr(M,Q)c . Since M is an
mey(Ddy,I), itis an 72Dy, Q) by 6.10, and therefore an 7D ., Q)
by 6.8. Hence, M is an 7R(p,Q), by 6.12.
If F is a compact proper subset of M, then ﬂg(F[M, 1) =0, by

6.13. Therefore, by 5.1 and 2.4, ]grcl(FIM,Q) = 0. Hence, since Q
is a field, we may apply, e.g., Wilder ([13] VIII 4.2, p. 253), to get
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PRI (M, Q)c = PL(M,Q)¢, 0<r<n ,
where the '"u" shews that unaugmented cdfnplexes are to be taken. Now

: PE(M, Q) = pT(M, Q)c when r £0,

while
PalM.Q)c = PO(M,Q)c + 1.
Therefore, using the remark at the beginning of the proof, we have,
finally, e
pT(M,I) = p?"T(M,I), 0<r<n,,
and
p*(M,1) = p°(M,I) + 1 = 1,

as required.
6.15. COROLLARY. By 6.4, an  72(C~) is an 7m™C,1). Hence;

The relations of 6.14 hold for every 3 C~)

We are unable to prove anything about the torsions of M, even when
M is an m?(C-) . ' ’

By 6.12, a locally compact (D _, Q) is an mNp,Q). Hence,
applying 6.10 and Wilder ([13] IX 1.2, 5.5), we have

6.16. THEOREM. A compact jm,l( LD ,,I) is a 1l-sphere.
6.17. THEOREM. An jmA(D,,1) is locally Euclidean.

From 6.5, we see that 6.17 has no higher-dimensional analogue.
However, we have not been able to settle the following two problems.

6.18. Let M be an m1(€,,I), such that, at each xe M, M is
1-LC and €l (x) exists and is zero. Is M an mP(C.) ?

6.19. 1s every 7(C.) locally Euclidean?
) ~
7. AVOIDABILITY. If, in our locally compact space M, o@z(x)

exists and is zero, then we are reminded of the situation where x is a
""'completely r-avoidable’ point in the sense of Wilder ([13] VII 6. 12). For
convenience we recall the definition.

7.1. DEFINITION. The point x ¢ M is said to be a completely r-
avoidable point, if and only if, given U, there exist V and W such that
xe WE V €U, and such that every éech r-cycle on ¥V is ~ 0 on

Uu-w.

The definition states that? fI(#V|U - W) =0. Hence, by 2.4,
Jf‘l,:( J‘Vlﬁ - W) =0, and consequently the éech and Vietoris forms  of
7.1 are equivalent.
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7.2. It is easily seen that. UD:‘;(X) = 0 if and only if there exist

neighborhood functions = §X5(U) and § 5(U,U') at x, with the property
that for each pair Ul and Uz satisfying the condition Uz £ § [(U}), ev-
ery r-V-cycle on” ﬁ(sr(Ul)) - Uy bounds on Ul - r(UI,UZ) (Cf. LTI,
4.2) .

7.3. THEOREM. If M is r-lc and (r+1)-lc at x, then DEx) =0
if and only if x is a completely r-avoidable point.

Proof: Suppose that 0 L(x) =0. Given U], let V = 5E(U]); and
given Uz V), let Va = 5T(U), Uz). Then J(r(\?l -U2|0;-V3) =0 by
hynothesis. But F#V = } - Vic Vl = UZ’ so that ]/r(}vllUl -Uy,) =0
also. Therefore, if U} is the /flrst set of the form U(x, l/n)C_Vl, then
Ui, V1, V2 are the U,V,W of 7.1. Hence, x is a completely r-avoidable
point. .

Conversely, if x is a completely r-avoidable point, define gg(Ul)
to be AT(AT+l(Uj)) = V)], andlet UpC V] be given. Let Vand W be
obtained by putting U = U, in.7.1, and define §L(U], Up) to be W.
Then, if I'T is an r-V-cycle on Vl U, CVI— , there exists by 4.3 an
r-V-cycle pI™f on FV, with the property that ['T~y "T on 171 -V.
By the avoidability property, 4y " ¥ ~0 on ﬁz - W, and therefore

F™~0 on (U; - V)WL(T, -W)cT; - W.

Hence, 4 .
HiV) -G U -vy) =0,

i.e., & w(x) =0, and the proof is complete.

The last theorem shews that the groups D ,(x) are, in a sense, a
generalization of the concept of .complete r-avoidability. A strict gen-
eralization would have retained the frontier set FV, and the proof of 3.8
could easily have been modilied to obtain the appropriate form of the
theorem. However, sets of the form &V are particularly .troublesome
when homotopy is involved.

We shewed in 6.11 that when the coefficient set G is a field, the
ML v, G) spaces are identical with the manifolds 7z,?(p, G). These
latter manifolds have been characterized in terms of avoidability when
they are orientable and compact (White [20] ); but our definition of an
(D ¢, G) has the advantage of being independent of the global properties
of the space. ;

For any set of coefficients, we have the following result.
7.4. THEOREM. If Dy(x) = 0, then CI(x) =

Proof: Let the neighborhood U; of x be given, and define
¥¥(Uj) to be gg(Ul) (see 7.2). We assert that yT(U) is the function
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required for €J(x) to exist. For,  given UzC vT(Up) let r*  be an
r-V-cycle on F_C__fl-z -x. Then there exists’ Us ‘'such that x eU; C 62 -F,
i.e., F.c U - U3. Hence, by hypothesis, T'"~ 0.on.Uj - 3§ o (U Us),

i.e., on a compact subset of I-J-l -.x. Therefore
T, - x|T; -x) =0,

and so € exists and is zero as required.

7.5. A sort of converse of 7.4 follows by putting €I(x) = 0 in
3.5; we require G to be such that a theorem of the form 2.6 holds.

Fromnowon, let G=1 orG=Q. If (Eg(x, G) exists and is
finitelyi generated or of finite diﬁ:érision, then property 3.1 holds. This
property is reminiscent of the following definition (Wilder [13] IX 6.3) .

7.6. DEFINITION. M is locally r-avoidable at x '"inthe relative

sense' if and only if there exists a neighborhood P of x, such that for

——

each UCP there exist V and W with x e WEVEU, and with the pro-
perty that every r-V-cycle on #V is ~0 mod M-P on M-W

Then we have

7.7. THEOREM. Let M be 1cI(G). If CI(x,G) exists and

e

is finitely generated or of finite dimension, then M is locally r-avoidable

at x in the relative sense (with respect to G ).

Proof: We prove the theorem when G =1, since the changes. re-
quired when G = Q will then be obvious. Take the neighborhoods Uj and

U, of 3.1 to be the first suitable sets of the form U(x,1/m). Then we as-
sert that the "V'" of 3.1 is the "P" required in 7.6. For let the neigh-
borhoods U and V' be given, such that
xeVVEUEP =V,

and let a =1/2 min [p (FV,x), p (¥V, £U)]+ Since M is locally com-
pact, we may assume U to be compact, and so a > O. Hence, if
FV =F* and F¥ = HU(F,a), thenby 2.6 Jﬁfl(F*lFi, I) is finitely
generated, say by the elements [rllr], ...l 'nr] . Let the r-V-cycle
r".lr on F*¥ bea representative of [r"r], 1<i<n. Then, by the pro-
perties of V, there exists a compact srl-:t F'IEI—J-Z - x such that, for

suitable integers njj (1<j<Kk),
k
LI r ]
s Zl nj; Ity om Fy o
J:

where the ['j areas in 3.1. Let W be the first set of the form
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U(x, 1/m) such that

Weu(xe) - Y oFp

Then V' and W are the V and W required. by 7.6.. To prove this,

let ['T pe any r-V-cycle on F*'. Then there exist integers m;, 1<i<n,

such that n .
rr~i§=:l ri;ni l—';r on F;: ,

and therefore a K Co

Tr~ 2 2 mynjj [} (=%, say)

on

But ['* is on
.k . l .
UF, ¢ U,-v=0U;-PSM-P,
i=1 ! 3 L

where the Fj are as in 3. 1. Hénée

P~ 0 mod M -P on M - W,

and therefore M is locally r-avoidable in the relative sense at x, with
respect to G. This completes the proof..

A similar proof may be given by means of éech cycles over a field.

If G is a field, then by 6.8, 6.9, and 6.11 the 7A?(Cy,G)'s, MmN D.,G)'s
and mn(p,G)'s ;are all identical; and so by 7.7, the n-gm's are at

each point locally r-avoidable in the relative sense, if r #n-1.
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