ON THE STRUCTURE OF RECURRENCE RELATIONS
by
Imanuel Marx

Recurrence relations have’lbng been known.for the characteristic
‘solutions of many linear second-order differential equatxons obtained from
the hypergeometric equation. These relations may be found by an exam1—-
nation of the Taylor series for the solutions. Recen,tly a fact_orlzatmn
method for deriving characteristic solutions of linear second-order differ-
ential equations was reported by L: Infeld and T.E. Hull [1], and their
approach includes a partial determination of the coefficients in recurrence
relations for the solutions. The equations which may be investigated in
this way include .the hypergeometric and confluent hypergeometric equations
in many forms, as well as a variety of the equations of wave mechanics
which, however, are chiefly also of hypergeometric type. Differential
equations of the second order with four regular singular points or their. con-
fluences present greater difficulty. Of their solutions, only the Mathieu
functions, studied by E. T. Whittaker [2], and-the radial prolate spheroidal
functions, to which Whittaker's method was applied by the writer [3], are
known to have recurrence relations. The determination of the coefficients
in these relations is complicated by the fact that, for non-hypergeometric
equations, neither the characteristic values nor the coefficients inthe Taylor
series for the characterist_ic solutions are known functions of the indices.

It is the purpose of this note to present a general framework which
appears to include all known recurrerce relations, and which may be of
assistance indetermining coefficients for recurrence re1at1on$ not yet com-
pletely known. The method of Infeld and Hull appears as the simplest case,
while the method of Whittaker is seen to be a special example of, avery
general approach that will yield 1nforrnat10n about all equatlons of interest.

The differential equation to be discussed is

(1) d/dZ[P(Z.) dy(z)/dz] + [R(z) + tS(z)] Y(z) =o.

It is assumed that the functlons P, R, and S satisfy suitable conditions over
a given range of the variable Z, and that a sequence t, of characteristic
values of the parameter t, and a corresponding sequence of characteristic -
solutions Yp(Z) of (1), are determined by additional conditions. The func-
tions Yp are so normalized that a single function Y(Z, t), analytic-in t for ’
each fixed Z which isnot a singular value of the differential equation, eoin-
cides with Y for t =ty and with Y, for t =t _1 .

By a well-known transformation of the independent and dependent vari-
ables in (1), the equation can be replaced by another in which P = 1. Other
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well-known transformations make S constant, say S =1, or both P=1 and
S= 1. In the case of many of the equations of mathematical physics it is
also possible to employ the latter transformations to replace the function
R by a constant, say R= 1 (cf.[1]). Returning to the original notation, oné¢
may therefore discuss equation (1) under the assumption that it has any oné
of the forms '

(1a) - d%Y/dz? + (R +tS)-Y =0,
(1b) d2y/dz? + {t+tS)-Y =0,
(1¢) d2Y/dz% + (R+1t) -Y =0,
(14) d/dz (PdY/dz) + (R +t):Y =0,

and only (1b) is not a completely general form.

In all known cases, the available recurrence relations include apair
of differential relations of the type

(2) P(Z) Ay(Z) dYpn/dZ + Bgn(Z)Yq = Yu_1

(3) P(2) F(Z) dYy_1/4Z + Go(Z)Yn.) = Yn

and all other recurrence relations maybe deduced from this pair. Further-
more, in every completely known case relations (2), (3) with the same co-
efficients hold for a sequence of solutions W,(Z), W, _j(Z) that are linearly
independent of Y,, Y,.1, respectively, and are normalized so as to be
values of the same analytic function W(Z,t). Under the assumption that two
linearly independent sequences of solutions of (1) satisfy (2) and (3), the
structure of the coefficients Ap, B, F,» Gp is to be determined.

By substituting the left hand member of (2) into the right hand mem-
ber of (3), one obtains a differential equation for Y,,» and similarly for
Y,-1- Itis a triviallemma thatthese equations must have coefficients pro-
portional to the coefficients in (1) for t = t, and for t = t,_), respectively.
Consequently the recurrence coefficients must satisfy the equations

(4) PF,An + FpBp + GpA, =0, PA F; + ApGp, + BpF, =0,
PF,Bn + GpBp -1 -a., PALGp + BpG, -1 - Qu.1
(5) PFLA, n PALF, n-

where Qu(Z) = R(Z) +tn S(Z), Q,_1(Z) =R(Z) + t,_) S(Z). From the dif-
ference of the two equations in (4), one finds that A, = dhFn, where dp isa
constant. [As a general convention in this note, constants are writtenas
lower case letters, while variable quantities are written as capitals.] The
two equations in (4) are seen to be identical. If one writes also Cn(Z) =
d,Gn(Z), the recurrence relations take the form



Recurence relations 47

(6) PA,dY,/dZ + B,Y, = Yp-1, PA,dY,_1/dZ + C,Y,_] = dnY,,

while the equations (4) and (5) become

- 1
(7) PAL + B, + C, = 0,
(8) PApBL + BpCp -dn - PQAZ = 0,
(9) PA,Ch + B,Cp - dy - PQ,_ 1A% = 0

If Ap, By, Cp, dp are found to satisfy the system (7), (8), (9), the func-
tions Y, and Ypn-] satisfy the recurrence relations (6) by virtue of the differ-
ential equations (1) for t =ty and t =th.). The function.Ap contains a
multiplicative parameter, which may be fixed by a normalizationof Y, and
Yn-1, and the same normalization fixes the value of d,. Additional para-
meters involved in the solution of the system must be so chosen that (7) ,
(8), (9) are satisfied. In the simple case where A, is constant, the choice
of parameters to satisfy the equationshas been examined indetail by Infeld
and Hull [1]. In the present note, only necessary conditions for a solution

will be given.

If A, = ap is constant; the recurrence relations (6) will be said to be
of type I, and of type Ia, Ib, or Ic if in addition the differential equation is
in the form (la), (1b), or (lc), respectively. Of the most general type I
with differential equation in the form (1), no examples are known to the
writer, and so this rather complicated case is omitted. The solution of
the system for relations of type Ia is still complicated, and since these re—
lations are relatively rare it will also be omitted. A brief discussion of
types 1Ib and Ic follows.

After the appropriate modifications, the equations (8) and (9) for types
Ia, Ib, or Ic become ‘ . ,

(8") anBp - Bi - dp - apQn = 0,

2 2
(9') agBp + BL + dy + a Qu 7 =0,

since (7) now implies that Cn = -Bp. In the case (1b), when Q, =1+t S,.
Qn-1 = 1+t,_1 S, one deduces from the sum of (8') and (9') that

1
(10) B;l = 3 (tn -tn-1)aps,
and therefore that
1
(11) B, = ”z‘(tn - tn-l) an, T + by »

where T(Z) is anintegral of S(Z) and b, is a constant. From the difference
of the equations one deduces
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2 2 1
(12) B, + aj[1 + -2—(fcn + tn_l)s] = -d .

A necessary condxtlon that type Ib occur is that the constants an, bnin (11)
can be so chosenthat the left hand member of (12) is a constant -dp. If the
resulting quantities By, ap, d, satisfy (8') and (9'),. the recurrence coef -
ficients have been found. R - ’

An alternative approach is to differentiate (12) and eliminate B by
use of equation (10):

t + t
1 n-1 n st
(13) B, = 5 — S!

Companng the der1vat1ve of (13) with (10), one obtains the necessary con-

dition

-1 ds

-1
dZ)

(14) , o S (S = constant

As examples may be cited the functions S =k (ecz+ P‘CZ) -2 and S = kZ‘2
where k and c are real or .complex .constants. The former of these func —
tions is shown in [1] to appear -as the coefficient S of a number of forms of
the hypergeometric equation, including the associated Legendre equation; _
the latter is the coefficient S of the Bessel equation, when that equation is

in the form (Ib)

. Ifthe recurrence relations are tobe of type Ic, the’ correspondlng equa-
tions (8') and (9') are easy to integrate explicitly. It is foundthat the char-
acteristic values must differ by a constant independent of n, th - th-1 =2k,
and that the coefficient R of the d1fferent1a1 equation (1c) must be a quad-
ratic function of the form R = “k2x% - 2fkx + g- The remaining re-
currence coefficients are given by By =a, (kx + f), dp = -aZ (g - f2 - th_q - k),
and the parameter an must be fixed by the normalization of Yn and Yp_3 .

The Mathieu equation
2

(15) a4y

dz.2

is in the form (1lc), but the coefficient. R clearly does not satisfy the con-
ditions of the preceding paragraph. For the radial prolate spheroidal
equation

(-2h% cos 2Z + t) Y =0

2
d 2 - dy ZZZ - m - i Y =0 s
(16) Suz? - DI+ (22 B - )

recurrence relations of the form (6)are known to exist [3], both for a change
of the index n and for a change of the index m. Still, as is eésily checked,
these relations are not of type I, and after the differential equationis trans-
formed as in (la), (lb), or (lc), the relations thatcorrespond are not of
types Ia, Ib, or Ic. Amethodof investigating the structure of the recurrence
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coefficients for variable Aj is needed, and it is furnished by a generaliza-
tion of the method used by Whittaker [2] for the equation (15). Relations (6)
with variable A, will be referred to as type II relations.

Returning to equatioﬁs’ (8) and (9), one may subtract to derive

(17) B;l—’ C"-(Qn-Qn..l)A = 0.

Fa

’leferenhatlng (7} and c0mb1n1ng with (17) one has

-:*(‘18')‘ e Bn + (PAn) Q. - Qn-l) Ay =0, .

\

(19) 7 Tzl o+ E‘z (PA;) "+ (Qn - Q1) Ay =0, "

so that B, and Cn may be detérmined by quadratures, once A, is kaown.
A linear equation for Ap may be obtained by differentiation of (8) and eli-
mination of By, Cp, .and their derivatives .by use of (7), (17) and (18). If
d(Qn - Q,_1)/dZ = 0, this equatlon can be easﬂy identified, ‘and so the’ dif-
ferential equation (1) is first transformed to the case (Id), with Qn=R + tp,
Qn-1 =R .+ th.]- The structure of the coefficients can be completely deter-
mined from the case. (I1d), and. for relations*of type:Il the differential equation
will be considered in this form only. The. equation for A obtained from _-the

elimination is ‘now Ca el i
. oo ., dZ 2 . syt
(20) : : EEE [P (PAn)] + _2 [P(Q + Qn-].x) An]:;f

+(Qn+ Qn.1) g7 (PAY)+ . 2PRIA] + (t, -, 1)2 A, =0,

.- To identify the equation (20), consider two functions .U(Z), V(Z) that
respectively satisfy the differential equations . . .
o d av '
P + 0, —_—_— — E . = .
L) irmue L) sa@u=o
If d(F: - G)/d? = 0, the product W = U V of thé two functions is a solution of
the differential equation : : '

d? d2
(21) 123 [P (PW )] o+ =2 [P(F + G)W] + (F + G) (PW )

+ P[ s (F+GQ)] W +(F-G)? W =o,

(This easily derived formula is an adaptation of one given without source by
Whittaker [2]). A comparison of (21) and (20) shows that
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(22) ag = e v v 20 (),

21 (2) (1) 22 (2) 2
LR Sl A50 M Al YS:-)I

where Y( ) - Y, denotes the characteristic ‘solution of (Id) for t = t, and

Y( )= Wn denotes a solution linearly independent of. Y“) for each n. The
cot;xstants Cn , (j» k =1, 2)in (22) must be fixed by addxttonal information
about the given equation, e.g., for the Mathieu equationthey are determined
in [2] from the condition of periodicity. By virtue of (22) and the differential
equations (Id) for Y, and Y, _], equations (18) and (19) may also be wr1tten

{23) B, = QuAn -P z: ch (dY(J)/dZ) (dY(k) /dZ).
: J. k. .
(24) L ¢ =g LA PL X (dY(J)/dz.) (dY(k) /dz) .
.o om-iom 1Jsk - .

The integration constants in the 1ntegratxons of (23) and (24) must be such
that dp is a constant in (8) and (9). ° The p0551b111ty of so choosxng the con-
‘stants is a compatibility condition or necessary condition for recurrence re-
lations of type II. L

It is expected that a somewhat expanded treatment of. the type 1I pro-
cedure as apphed to recurrence relatmns for the radial prolate spheroidal
functions will appear in UMM-126, a forthcoming publication of the Willow
Run Research Center. , -
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