A JACOBIAN CONDITION FOR INTERIORITY
by C.J. Titus and G.S. Young

Let Dbe an open setin Euclidean n-space, EY
and let f: D -~ E" be a continuous function from D into
E™. There are a number of topological conditions on
f so that f is interior on D; that is, so that the image |
of every open subset of D is open in EDR, However,
these conditions are not formulated in such a way as
to yield simple proofs of interiority for functions as
they occur naturally in analysis. For example, a
function analytic in a plane domain is interior, butthe
writers know of no proof of interiority that does not
employ such tools as Taylor series or the integration
theory of analytic functions. (For a discussion of tliis
case, see Whyburn's Memoir [4].) In this note, we
provide simple sets of conditions for interiority and

for quasi-interiority.

Definitions. A mapI.)ing f: A--DB is light if for
each point b of B, f-1(b) is totally disconnected. It is
monotone if for each point b of B, f~*(b) is connected.
It is quasi-interior (Whyburn) if for eachpointb is B
and for each open set U in A that contains a compact
component of £-1(b), b is in Int £(U), the interior of
f(U). Clearly a light quasi-interior transformationis

interior,

Theorem 1. Let D be an open set in E®, Let

f: D> ED be of class C!, and let the Jacobian J(f(p))
be zero only on a compact subset of D of dimension
less than n=1. Then f is quasi-interior on D.

Proof. If Z denotes the subset of D on which
89
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J(f) vanishes, then the n-dimensional measure of {(Z)
is given by fZ J(f(p))dp = 0. Hence f(Z) has no in-
terior points. Let p be in (D). If C is a component
of f-1(p), and C intersects D - Z, then C is a point,
For at each point of CN(D - Z), the fact that J(f) # 0
there implies that f is locally one-to-one there. If C
is in Z, then C is compact. In the first case, suffi-
ciently small open sets containing C are mapped
homeomorphically into open sets containing p. In the
second case, given an open set U containing C, there
is an open set V containing C such that V, the closure
of V, is the union of the simplexes of a finite simpli-
cial complex, K, and such that V - V does not inter-
sect £-1(p). Under these conditions we can define the
local degree of p with respect to f and V, d(p,f, V).
Concerning d(p, f, V), the following properties are well
known.

(1) Thereis an open subset W of E' - §(V - V)
that contains p and is such that for each point q in W,

d(p, £, V) = d(q, £, V). ([1], p. 473-4).

(2) If d(q,f, V) #0, qin ER, then q is in £(V).
(1], p. 468).

Since f(Z) contains no interior point, there is

a point q in W - £f(Z). Then at each point x in £f-1(q),
J(f(x)) # 0. Hence f is one-to-one in a neighborhood
Uy of such a point, It follows that the compactset V
cancontainonly a finite number of such points, x;, x5,
.o s X» all lying in V. Since dimZ<n - 1, D - Z is
connected ([2]. p. 98), so the continuous function J(f(x))
.is-of the same sign throughout D - Z. If J(f) g
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positive in D - Z, each set f(Ux;) has its orientation |
preserved, and contributes a +1 tod(q, f, V); if J(f) is

negative in D - Z, each such set has its orientation

reversed, and contributes a -1 to d{q,f, V), (Thisis

theé essential content of [1], p. 477.) Hence d(q,f, V)
=+ k #0. Itfollows from (1) that this is true for all

other _points of W, and from (2) that W is in f(V). So

p is in Int f(V), which completes the proof.

We will discuss the implications of this result
after the next theorem.

Theorem 2. Let D be an open set in E®, and
let f: D > E™ be light, of class cl, and have a non-

negative (non-positive) Jacobian in D. Then fis inte-

riot -

Proof., Let X be a compact subsetof D that is |

the closure of an open subset of D. Since f is light,
a theorem of Hurewicz ([2], p. 91) shows that dim
f(X) = n, so that by ([2], 'p. 44), {(X) contains an open,
subset of E®, 'This remark, with continuity, shows
that Int (D) is dense in f(D). 1If Z again denotes the .
set on which J(f) vanishes, the n-dimensional mea-
sure of £(Z) is zero, so that Int f(D) - £{Z) is dense in
f(D). That is, arbitrarily close to each point of £(D)
there are points q such that J{(f{x)) # 0 for any x in
£-1{q). This is all that is needed to carry through the
argument of Theorem 1. So fis quasi-interior and
light. and hence interior.

We can now see that in Theorem 1 the condi-
tion that dim Z < n < 1 could be replaced by the con-
ditions that J(f) have the same sign on D - Z and that
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dim Z < n.

A few remarks on Theorem 2 may be helpful
to the non-topologist. For each point p in f(D), the
points in f~1(p) not in Z are isolaied, so forma count-
able set having no limit point in D - Z. But that the
same is true for £ 1(p)N Z is not at all obvious, if in-
deed it is true. For n = 2, the work of Stoilow and of
Whyburn[3]gives a complete analysis of the situation,
but very little is known about interior light trans-
formations of open sets in E®, n > 2. For example,
if it were known that each point inverse for such a
transformation were countable, Hilbert's fifth prob-
lem would be solved.

Part of the significance of Theorem 1 is the
following. Any continuous map f: A~ B on a compact
metric space A can be factored into a monotone map
m: A - M followed by a light interior map 1: M—=B so
that f = lm. (Eilenberg-Whyburn, [3], p. 141l.) We
-can prove the following theorem. ‘

Theorem 3. Let D be an open set in ER with
a compact closure, and let f: D - ER be continuous and
of class Clin D. Let the set Z where J(f) = 0 be com-
pact in D and of dimension less than n = 1. Thenfcan
be factored into a monotone map m: D -~ M such that
m(D) is an open subset of M, followed by a light map
I: M - E? such that 1 is interior on M(D).

Proot. The ''middle space'' M is the space
whose .points are the components of sets f-1(p), p in
f(D), with a topology such thata subset of M is open if
and only if the union of its elements is open in D. The
map m is the natural map assigning to each point x in
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D the component m(x) of £~ 1f(x) containing it. Such a
component is either a point of D - Z, or a subset of
D - D ora subsetof Z. Since m(D - D), then, cannot
intersect m(D), we see that m(D) is open.  Whyburn
~has-proved ([4], '10.4, p. 14) that a compact mapping
is quasi-interior if and only if it factors into a (topo-
logically) unique monotone map followed by a light in-
terior map. Although his result'does not apply di-
rectly, inspection of his argument shows that Theorem
3 follows from it and from what we have proved.

We remark that all our results are valid for
mappings of open subsets of differentiable manifolds
into differentiable manifolds of the same dimension,
though the details would take more space.

To return to the case of a function f(z) analytic
in -a plane domain D. Representing f(z) as u(x,y) +
iv(x,y), we have J(f(z)) = u)z< + u%. = v 4 v%,,which
v anishes only where f'(z) = 0. If these form azero-.
dimensional set, the mapping is necessarily light, and
so is interior. Or if we know that f(z) is light and is
not constant over an open subset of D, then, again, {
is interior. These properties of analytic functions do
nothave ""elementary'" proofs, however. The interest-
ed reader should compare this discussion with Section
3 of Whyburn's [4].
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