THE LOTOTSKY METHOD FOR EVALUATION OF SERIES

Ralph Palmer Agnew
1. INTRODUCTION

A. V. Lototsky (or Lotockii) [5] has recently introduced a method for evaluation
of divergent series which seems to be new and to have fundamental significance
which may make it rival in importance the classic methods of Cesaro, Abel, Euler
and Knopp, Borel, and others. The method involves a triangular matrix transforma-
tion of the standard form

n
(1.1) On= X an Sk
k=1

by which a given series u; + u, + ug + --- with partial sums s, =u,, s, = u; + u,, *** is
evaluable to 0 if 0,>0 as n> .

For each n=1, 2, 3, +++, let p,(x) be the polynomial of degree n defined by
(1.2) P = x(x+ 1(x+ 2)+(x+n-1),
and let the constants p,), pPp2, ***, Pnn Pe defined by
(1.3) Pn(®) = pp1X + ppoxZ+ Pp3X> + ot + PanX™.

To simplify our work in some places, we let p,, = 0 when k < 1 and when k> n.
Letting a,) = pp/n! and

2 p
(1.4) op = X Bkg
k=1 nl

we shall call a series u, + u, + .-+ and its sequence s,, s,, **- of partial sums
evaluable L to o if 0,> 0 as n->eo,

Numerous properties of this Lototsky method are obtained. Because the paper
[5] of Lototsky appears in a periodical that is not always readily accessible, no
acquaintance with it is assumed, and the connections between the present paper and
[5] are explained in such a way that they can be understood without reference to [5)].
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2. THE NUMBERS p_;; REGULARITY
It is easy to see from (1.2) and (1.3) that
(2.1) pnk>0s Z'n_':l’
= nl
k=1
the latter condition following from the fact that Zp ;, = pn(l) =nl. Since
Ppy1 X =(n+x)p, (),
we obtain the useful recursion formula
(2.2) Pnt+l,k = DPn,k *+ Pn,k-1>

which is valid when n> 1 and - < k < . With the aid of (2.2), it is a short task to
calculate the elements of the matrix p,, for which n < 13. The {first 7 rows are

1
1 1
- 2 3 1
(2.3) 6 11 6 1
24 50 35 10 1
120 274 225 85 15 1
720 1764 1624 735 175 21 1.

It is easy to see that

(2.31) J P = -1, p,.=1.
On setting

- 1. 1. ..,1
(2.4) Hy =1+ g+3+ e+

when n> 0, and H, = 0 when n < 0, we can use (2.3), (2.2) and induction to prove
that \

(2.41) Pz = (n - n1 Hn_l .
Using the same procedure and (2.41), we can prove that

H H
(2.42) Pn3 = (n-l)!(—;-+—-§-+—§+---+an_'i)

when n > 3. The right side will be increased if the numerator of each term in
brackets is replaced by H,,_;. This gives the formula

k-1
(2.43) Prx< m-D1H ~} >k
for the case k = 3, and continuation of the procedure proves by induction that (2.43)

holds for each k=1, 2, 3, ---, Because H,_; is of order log n for large values of
n, it follows from (2.43) that, for each fixed Kk,
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(2.44) Pat/nl < n"VHE] = o))

as n> . Because of (2.1) and (2.44), the three standard conditions for regularity
are satisfied and L is regular. In [5], most of the formulas of this section are
given, and it is proved, without explicit use of the conditions for regularity, that if
s,> S then 0,>S.

3. POWER SERIES
In its application to power series, the L method is potent and extremely simple.

We begin with the geometric series 1+ z + 22+ -+, where z is a complex number
for which z # 1. In this case u, = zk’l,

(3-1) Sk =

and the L transform, which we now denote by 0,(z), is

(3.2) o (z) = 1-2)"1-@1-2)",(2),
where
(3.21) f (2) = —ﬁl—! > pnkzk.

k=1

Use of (1.2) and (1.3) gives

z(z+ 1)z + 2)(z+n-1) .

(3.22) f.(z) = 5

In case z is 0 or a negative integer, it is obvicus that f,(z) >0 as n>« and hence
that o,(z)> (1 - z)-!, so that Zz™ is evaluable L to (1 - z)~'. Incase z# 0, -1, -2,
-+, we use the functional equation of the factorial (or gamma) function to put (3.22)
in the form

1 (n+z -1}
- 1)1 n! :

(3.23) fa(e) = 5

In case %(z - 1) < 0 or %z < 1, it follows that f,(z)> 0 and o (z)> (1 - z)~*. Thus
the geometric series =z, which converges to (1 - z)™! only when |z| < 1, is evalu-
able L to (1 - z)~! over the whole half-plane %z < 1. By use of the Cauchy integral
formula it can be shown that if Za,z" is a power series which has a positive radius
of convergence and if ¥(z) is the analytic function which it genevates by analytic ex-
tension along vadial lines from the ovigin of the complex plane, then Za, z"™ is evalu-
able L. to ¥(z) at each point inside the Bovel polygon of F(z).

By a method which is different from that given above, and which will be presented
in Section 6, it is shown in [5] that if z is a negative integer then the series
O+ 1+ 2+ 2%+ --- is evaluable L to (1 - 2)-1,



108 RALPH PALMER AGNEW
4. EXPONENTIAL INTEGRAL SERIES

In this section we show that the classic rapidly divevgent sevies

1! 2! 31 41
4.0 Ol -+ =gt om

is evaluable L for each complex number z for which %z > log 2 = 0.69315 **+. One
reason this series is of interest is the fact that the right member of the formula

-t -
(4.11) Je dt~3-i(0! _1!+2!_3!+...)
z

is the standard asymptotic expansion of the exponential integral in the left member.
In case z is a complex number which is not real, the integrals in (4.11) and some of
the formulas below are to be interpreted as line integrals over the line in the com-
plex plane extending from the point z to « in the direction of the positive real axis.
Of course the case z = 0 is always excluded from consideration, and we shall not be
concerned with the case in which z is real and negative because in this case the
series (4.1) is a divergent series of positive terms which is evaluable L to +e.
There are some methods, more powerful than the simpler ones ordinarily treated
in textbooks, by which the series (4.1) is evaluable for at least some values of z.
For a discussion of some of these methods by which (4.1) is evaluable, particularly
when z = 1, and for references to earlier literature, see Good [3]. The value V(z)
to which the series (4.1) is evaluable by these methods is

[+a]
-t -t
_ z| e - e
(4.12) V(z) = ze T dt z§———z+ tdt,

N— 8

the last member of (4.12) being obtained from the middle one by a change of the path
of integration. When z = 1, the series (4.1) reduces to the series

(4.13) Ol -11+21 -31+ 41 -+,
and the value Euler [2] obtained for this series is
(4.14) V(1) = 0.59634 73621 237.

Viewing (4.1) as a power series in z~!, we observe the well-known fact that the
radius of convergence is 0 and that each point z~! is regarded as being outside the
Borel polygon.

As we shall see, the application of L to the series (4.1) is simplified by the fact
that the factorials have integral representations (the Euler integrals) which enable
us to make use of the simplicity of the L transform of the geometric series. For the
series (4.1) we have
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1 )-1 ¢ tf-t i-1

4.2) uj = (-Z—) G-DI = Se (—z—) dt,
0

and hence

k < Kk

et -t

(4.21) sk=j§‘,luj=zgz+t[1-(;) ]dt.

B 0

Using (1.4), (4.21), and (4.12), we find that the L transform o0,(z) of the series (4.1)
is

) - 4 K
(4.3) o,(z) = V(z) - %S ze+ i 2 pnk(?) dt.
0 k=1

Using (1.2) and (1.3) gives
(4.31) o (z) = V() + zf__,(2),
where

-1 et (-t -t -t -t
(4.32) @ = T §z+ t(;) (—z—+ 1) (?+ 2) (;+ n) at.

To show that the series (4.1) is evaluable L to V(z), it is therefore necessary as
well as sufficient to show that f,(z) > 0 as n>,

Changing the path of integration in (4.32) by setting t = zu and u = z~'t gives

o]

(n +1 1)!S lie;z:: (-u+ D(-u+ 2)-++(-u+ n) du,
0

(4.33) f (z) =

where the path of integration is the line running from 0 to « through the point z~?,
When z is a complex number having a positive real part, it can be shown with the aid
of the Cauchy integral formula that the path of integration in (4.33) can be replaced by
the real line u > 0. Hence, when %z = x> 0,

o0

(-1 Ste'Zt
m+ D11+t
0

(4.34) f.(z) = (t- 1D -2)(t-n)dt

and
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o0

(4.35) l£,(2)] < (’ﬁTLm S e ™ (t - Dt - 2)(t - n)|at.
0

Letting g, (z) denote the result of replacing « by n on the integral in (4.35) gives

k
1 2 x
(4.36) en(@) = meDT S e-%t| (t - 1)(t - 2)--(t - n)|dt.
k-1
But when k - 1 <t < k we have
(4.37) |t - D@ -2)(t-n]/n! < (k-Din-k+Di/n,

and this cannot exceed 1. Therefore, when x = %z > 0,

k _ o0
1 2 -xt 1 -xt
(4.38) gnle) <=3 = S e dt_<_n+15e dt
k=l 0

and g (z) >0 as n>. This and (4.35) imply that, when x = 9%z > 0,

(4.4) |£,(2)| < o(1) + h(2),
where
(4.41) hef®) = gy ) eHE - Dt 2enle - m .

Changing the variable of integration in (4.41) gives

k+1
(4.42) hn(z) = (_:;_m';ﬁ > S e **n+t-1Dn+t-2(n+t-ndt
k=0
k
k+1

S e_kx(n+ Knh+k-1-(k+ 1)dt

P

-nx

1 1
S+ DA - EEE-1D"

.
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From this we see that we will have h,(z) = o(1) if e*- 1> 1, that is, if x> log 2.
Thus, when x = %z > log 2, (4.4) implies that f(z) = o(1) and (4.31) implies that
0,(z) >V(z), and the series (4.1) is evaluable L to V(z).

It is of particular interest that the series Zu, for which
(4.5) u, = (-1)™nl/(log 2)

is evaluable L, because it will be shown in Section 5 that a series Zu, canrnot be
evaluable L unless theve is a constant M for whick |uy| < M'n!/(log 2)™ Thus
there is a sense in which (4.5) is the most rapidly divergent series that is evaluable
L. In particular the series (4.1) cannot be evaluable L when |z| < log 2. Our work
does not show whether (4.1) is evaluable L. when z is a nonreal number for which
%z < log 2 and |z|> log 2.

The results and methods of this section are completely different from those of [5],
where it is shown that the series

(4.6) 0+0! -1+ 21 =31+ 41 - -
is evaluable L to the value
= 0]
1 -t 2 ( 1) _t
(4.61) = dat + 2 (t - 1)(t - 2)+-+(t - n)dt.
2 n+2)1 2)1
0
If we start with a suspicion that the series in (4.61) converges to the value

©0

(4.62) V(1) = jli dt,
0

it is possible to prove that this is true.

5. THE INVERSE OF L

The relation between the elements s,, s,, -« of a sequence and the elements
03, O3, *+- oOf its L transform can be put in the form

n

(5.1) nlo, = 3 ppxSk = Pul8) = s(s+ L)(s+ 2):«s(s+n-1)
k=1

where, in (5.1) and formula (5.21) below, a polynomial in s stands for the result of

expressing the polynomial in the form Zask and then replacing sk by Si. For
each n=1, 2, 3, +-+, let constants qn1, qn2, ***, Qnn be defined by

From (5.1) and (5.2) we obtain
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n n
(5.21) E anklok Z anpk(S) = g = Sn,
k=1 k=1

and we have the formula

(5.3) Sn

n
Z (k! an)ck’
k=1

which gives the invevrse of the transformation L. The first 7T rows of the matrix qpux
are

1
-1 1
1 -3 1
(5.31) -1 7 -6 1
1 -15 25 -10 1
-1 31 -90 65 -15 1
1

-63 301 -350 140 -21 1.

Supposing that q,x= 0 when k<1 and when k > n, we see that the elements of
this matrix seem to satisfy the recursion formula

(5.32) Gn+l,k = -Klp  + Qp k-1-

Validity of (5.32) follows from the formula

n+1
E qn+1,kpk(s) = Sn+1 = s.8"
k=1
n n
(5.33) =83 q, 08 = T qys(s+ 1) (s+k-1)(-k+ s+Kk)
k=1 k=1
n n+l n+l
= ¥ (-kanopk(s) + X ap 1 1Pk(8) = X (kapy+ ap g 1)Pi(s)
k=1 k=2 k=1

and the fact that the functions py(s) are linearly independent.

Using (5.3) and (5.32), we now show that if a series u, + u, + *** with partial sums

S;, S,, *** is evaluable L, then theve exist constants M and M' such that
(5.4) | sn| < Mn!/(log 2)"

and

(5.41) |un| < M'n!/(log 2)".

When we have proved (5.4), (5.41) will follow from (5.4) and the inequality

Iunl= lsn"sn—lls |Sn|+ |Sn-l| .
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Whenever the sequence s,, s,, -+ is evaluable L, and indeed whenever the sequence

S;, g, *+ has a bounded transform 03, 0,, ---, we see from (5.3) that there exists a
constant M, for which Isn| <M,Q,, where

n
(5.42) Q= T k!fgmd .
k=1
It suffices therefore to show that there exists a constant M, for which
(5.43) Qn < Mjn!/(log 2)*.

Since qnx and qn -1 have opposite signs when both differ from 0, it follows from
(5.32) that

(5.5) lape1 2] = Klag il + lan 1l -
Letting qn(x) be defined by

(5.51) qn(x) = 1qn]lx+ anzlxz+ cee |qnnlxn

and using (5.5) gives

(5.52) A1) = x[q,x) + q,(x)]
and hence
(5.53) & gn(®) = x5 Fa,x).

This and the fact that the formula

© kn—lxk
(5.54) g, (x) = ka(—kt‘f)—!

holds when n = 1 imply that (5.54) holds for each n=1, 2, 3, +--. Starting with
(5.41), we find that

(5.55) Q, = ;: anklge‘xxkdx = je'x O (x) dx.
k=1 0 0

This and (5.54) give

o0

o kn—lxk

_ ~2X
(5.56) Qn = e kgi_(k_:__lﬁdx.

0

Since the terms of the series are all positive, we can reverse the order of integra-
tion and summation to obtain
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0 n
(5.6) Q=1T K.
k=1 2
"To appraise the last sum, we let A = log 2 and
(5.61) f.(x) = x"/2% = x"e"Mx,

We note that £,(0) = 0, £,(x) >0 as x>, f (X) is increasing over 0 < x < A~In,
and f,(x) is decreasing over X > A"'n; and we see that elementary geometrical or
analytical considerations analogous to proofs of the integral test for convergence of
series yield existence of numbers 6,, 8,, **+ such that -1 <8, <1 and

o0
(5.62) Y (k) = 6 £, (X"In) + an(x)dx.
k=0 0
This gives
co n na,-n 1
(5.63) k- _ n"e n!

x=1 2K Oniog 28 * Tlog D"

Since Stirling’s formula shows that

(5.64) 0 < nte-n < (2nm)-1/2n!,
we obtain
) 2k n! nl
(5.65) L. o( + _
k‘j‘l 2k n!/2(log 2)n> (log 2)n+1
Hence
13 ko n!
(5.66) Q.=>YX X -0 ————)
T2 2k ((log 27/’

and the conclusions (5.43) and (5.4) follow.

Most of the results of this section are obtained in [5] by use of more notation and
substantially more complicated proofs.

6. SERIES-TO-SERIES VERSION OF L
Supposing that o, 0,, -+ is the L transform of a sequence s, s,, -+, let
(6.1) Sp = U, + Uy+ «o0 + Uy,

(6.11) 0,=U,+ Uy + ==+ Up.
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We see that U; = 0, = s, = u;. When n>1 we have U, = 0, - 0,, ;| and hence

- (P P 1 <
(6.2) U, = k?l( g}k - (1111—-111%) E uj = oy ?1 ( Z (Pn,k - DPn-1 k))u_]
But the identity

(6.21)

vk

(Pnk - DPn-1,8) = Pn-1,j-1
j

results from adding the identities

(6.22) Pnk - ™n_1k = Pn1,k-1 - Propc G<Sk<m),

which are obtained by replacing n by n - 1 in (2.2). Therefore

1 n
(6.23) ) n = —T E ,j_luj

and, since p, _; o = 0, we obtain the transformation formulas
(6.3) U, = u,,

n-1
(6.31) U, = —1,

n

Pa-1,k Ukl  (n>71).
k=1

From (6.11) we see that Zuy is evaluable L to o if and only if ZUy converges
to 0. When the series u, + u, + +: is evaluable L, we may denote the value by the
left member of the formula

0 o0 1 -
(6.4) L{ > uk}= U+ ¥ oy Z -1,k %k

k=1 n=2 k=l
and we see from (6.3) and (6.31) that (6.4) is valid if and only if the sevies on the
vight is convergent. The formula (6.4) can be put in the form

(6.41) { = uk} =u,+ E ‘}T+—17 E PrkUk+1-
k=1
The right members of (6.4) and (6.41) are
uz uz+us Pnluz+ ** + pnnun+1
(6.42) M iy e @D

Applying (6.41) to the series 0+ u, + u2(+ «++ gives the formula
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o n
1
(6.5) L{0+uj+uz+ +} = 3 Y PnkUk,
o (n+ D! o1

which has a more attractive right member than the previous formulas. The right
member of (6.5) is

up uptup Pn1li+ =+ Ponlly
— —_—— .l.+ ene
2! 3! (n+ 1)! ’

(6.51)

and this is systematically used in [5] in place of L{u1 + u, + **-}, when series are
being evaluated. Unfortunately this gives a confusion of the L transforms and L
values of the two different series u; + u, + ++- and 0+ u; + u, *--. Because of this
circumstance, we introduce a class L, L,, L,, -+ of methods for evaluation of series
which are related to L in the same way that the Borel-Sannia methods B,, B,, B,, ***
are related to the Borel method B. We will say that the series u, + u, + -+ is evalu-
able L, to o if the series

(6.6) O+ O+ oo+ O+ Uy + Uy + oe

obtained by prefixing r zeros to the series u, + u, + - is evaluable L to o.

In particular, L, = L. The formula

©0 n
1
(6-7) Ll{ul + Uz + "'} = Z fn+ 15! Z Pnk Yk
n=1 k=1

is then correct, and many of the statements in [5] concerning L should be converted
into statements involving L,. As we shall show in the next section, ke conclusion
that a given sevies is evaluable L, is weaker than the conclusion that it is evaluable
L.

7. THE SEQUENCE 0, s,, s,, ***

The relation between the L transforms of the two sequences s,, s,, <+« and
0, s,, S,, *** is so simple that fundamental theorems concerning them are completely
obvious. These theorems are analogous to well-known but more difficult theorems
involving Borel transforms of the two sequences. Let 0,, 0,, **- denote the L trans-
form of the sequence s,, s,, -+ so that, with the definition s, = 0,

1 n 1 nitl
(7.1) op = al E = o7 E Pn,k-15k-1»
and let ogl), ogl) , **» denote the L transform of the sequence 0, s,, s,, ***, so that
1 n
(7.2) 0(1) =l Z Pnk Sk-1 -+

Multiplying the recursion formula (2.2) by sk_l/n! and summing over 1<k<n+1
gives
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- n+1 n+l Pn. k-1

n+ —F n,x-

(7.3) (n+ 1) Z —nTij—Sk 1 =10 E nl +k§1 nt k-1
and hence

(7.31) ’ (n+1) 0‘(1) = n0(1)+ o,

Replacing n by k in (7.31), summing over 1 <k < n, and using the fact that 0(1) =
gives the simple formula

(7.4) (1 N _)0(1) g1+ 0'2n+ coe 4 O'n’

which is equivalent to a formula proved in [5] by induction. Since the arithmetic
mean transformation C, is regular, the hypothesis that 0, >0 implies that o,gl) > 0,
Since there exist divergent sequences evaluable C,, it follows that there exist se-
quences for which o, diverges but O‘Q) is convergent. Thus the formula

(7-5) L{ S,, Sy, "'} = L{O, 51, Sa, "'}

is correct whenevey the left side exists; bul the vight side can exist when the left side
fails to exist, For infinite series, the analogous conclusion is that the formula

(7.6) U+ L{u, + up + oo} = Liug+ v, + up + +-4}

is corvect whenever the left side exists, but the vight side can exist when the left
side fails to exist, Taking the case in which u, = 0, we see that the method L, de-
fined in Section 6 is in fact stronger than L, and the conclusion that a given series

is evaluable L, is therefore weaker than the conclusion that the series is evaluable
L. :

8. RELATION BETWEEN L AND THE EULER-KNOPP METHODS E_

In this section we show that if a sequence (ov series) is evaluable to S by the
Eulev-Knopp method E. of order r, and if r is veal and positive, then the sequence
is also evaluable L. to S. Moveover the conclusion fails to hold when r is not real
and positive. Thus L D E, if and only if r > 0. For each complex r, the Euler-
Knopp transform of order r of a sequence s,, s,, S,, *** is defined by

(8.1) Sn = ;_1‘, ( ) k(]- - r)n-k Sk (n = O; 1: 2: “'))

and the sequence is evaluable E,. to S if S, S as n>w. In case r = 0, the trans-
formation is a trivial one for which S, = s, for each n, and each sequence is evalu-
able to its first element. We suppose henceforth that r # 0. The transformation in-
verse to (8.1) is

(8.11) 8j = é (i{) (’lli)k(l '_)

0
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The transformation E. is regular if and only if-r is real and 0 < r < 1; and, when
0<r<1, E; belongs to the class of regular Hausdorff transformations. A treat-
ment of these matters and references to the literature of the subject may be found in
Agnew [1].

Using (1.4), we put the L transform o0,, 0,, -*- of the sequence s,, s,, *** in the
form
. 1 n
(8.2) Ontl = WD 2 Pntl,j+18; (n=0,1,2,-).
j=0

Substituting (8.11) in (8.2) and changing the order of summation gives

1 n
(8.21) On+l = @y DI k%bnksk;
where
k n . ik
1 1\’
(8.22) bhk = (;) jz::k pn+1,j+l(il{) (1 -;)

when 0 < k <n. We simplify some of our formulas by writing bpyx =0 when k<0
and when k> n. We see that L. D E, if and only if the transformation (8.21) is regu-
lar. We can therefore prove that L. O E,. when r > 0, by proving that the three con-
ditions

1 n
(8.23) 2 {bn <M (n= 0,1,2, e) ’
m+ D1 k=0| k] <
(8.24) (n+ CTS Eo (n=0,1,2,:),
(8.25) nEm z‘rﬁl—iﬁ bnk =0 (k = 0, 1, 2, -..)

hold when r > 0.

The fact that (8.24) is valid whenever r is complex follows at once from (8.21)
and the fact that if s, = 1 for each k, then both Sy =1 for each k and 0,,,; =1 for
each n. As we shall see at the end of this section, when r = 1/2 the coefficients bpx
are all nonnegative and (8.23) follows from (8.24); but in the case when r = 1/3, for
example, many of the coefficients by are negative and (8.23) becomes the critical
one of the three conditions.

We now derive the recursion formula (8.4) below and use it to show that (8.23)
holds when r > 0. Using the fact that the binomial coefficient in (8.22) is 0 when
j < k, we can put (8.22) in the form
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£ o (1) (1-1)
j=0

Using the result of replacing k by (j+ 1) in (2.2) gives

k j-k

(8.3) b = ( %)

1 k «© ] 1 j-

(8.31) b = 011+ (7) ):0 eai (1) (1 -1
J:

and hence

L j-k+1

1 i+ 1 14/
(8.32) b= mby )+ (;) pn’j+1(3 j ) (1 -;)
j=0

Replacing the binomial coefficient in (8.32) by the right member of the elementary
formula

(8.33) (jil){=(kj.1)+(i<)

and using (8.31) gives the recursion formula

1 1
(8.4) b = ;bn—l,k—1+ (n+ 1 "‘I?)bn-l,k

for the coefficients bpy; it is valid when n > 1 and - < k < o,
Letting

1 o0
(8.41) An = o1 2 Paxls
k=0

we see from (8.4) that

-1 -
(8.42) An_|r |+n|f;1 - IAn_l.

Supposing now that r is real and r > 0, we see from (8.42) that if n+ 1 > r~!, then
A <A This implies that (8.23) holds when r > 0.

We now derive some formulas which show that (8.25) holds if and only if %r > 0.
Letting

n-1°

(8.5) x=1-r"1

we start with (8.22) and obtain
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C(1\k g gk 2 1\ kg gk g 2¥!
- (;) kI gk J.Zgopn“rj“x (;) k! g x Z_: Pntl,j X7
Use of (1.2) and (1.3) then gives
k
(8.52) be = (1) o9,
where
(8.53) ¢ (® = (x+ Dx+ 2)+(x+n).

Thus, as n >,

m+ DI n+1+x-11  (n+1)!

xI'  (n+ D! = T xl n*"l[1+ o(D)],

(8.54) bn,0= ¢ =

and we see that b, 5=o[(n+ 1)!] if and only if %(x - 1) <0 and hence %r > 0. Let

(8.6) ol = —tov Lo L

Then

(8.61) oh(®) = ¢, () Y, (¥,

(8.62) on(®) = D {[Yn ] + Y},

(8.63) on(® = S [Wa]® + 8y, () Wy + Y Ya®},

and it follows easily by induction that, for each k=1, 2, 3, ---, the derivative qbf,k)(x)
. is the product of ¢,(x) and a polynomial of degree k in ¥ ,(x) and its derivatives.
Since .

(8.64) ¢, (x) = O[(n+ 1! n*-1], Yn(x) = O(log n),
and w()(x) = O(1) when j> 1, it follows with the aid of (8.52) that

(8.7) b = O{(n+ 1! n*-!(log n)k}.
This implies the conclusion (8.25) when 9 (x - 1) < 0 and hence when % r > 0. Thus
we have completed the proof that LD E,. when r > 0.

It remains to prove that L does not include E, when r is not both real and
positive. In case 9ir < 0 we already have the conclusion because, as we saw in con-
nection with (8.54), the condition by, = o[(n + 1)!] fails to hold in this case. To
complete the proof, it would be sufficient to prove the fact that if r is not real but -
has a positive real part, then (8.23) fails to hold. It is, however, more informative
to give an indirect proof of this fact by proving the following. If r is a complex
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number which is not real, then there exist some values of z for which the geometric
series 1+ z + 22 + +-- is evaluable E; but is not evaluable L. As we see from (3.1)
and (8.1), the series 1+ z + z2+ -- is evaluable E;, to the value 1/(1 - z) if and
only if the sequence 1, z, z2, z3, *** is evaluable E, to 0. But from (8.1) we see
that the E, transform S,(z) of this sequence is’

(8.8) S,(z) = (1-r+rz2)".

Thus the set Z, of values of z for which the series 1+ z + z%+ -+ is evaluable E
to 1/(1 - z) is the set for which

(8.81) |1-r+rz|<i,

that is,

(8.82) zZ - (1-—15) < 1 .
r r

The set Z, is therefore the set of points z in the complex plane which lie inside the
circle which has its center at the point (1 - r~9) and which passes through the point
1. When r is not real, the center of this circle does not lie on the real axis, and the
interior of the circle therefore contains some pomts z for which %z > 1. For these
values of z the series 1+ z + z2+ --- is evaluable E, but, as we see from Section 3,
the series is not evaluable L. This establishes \the conclusmns.

In order to be able to point out the connectlon between [5] and this section, we
derive an additional formula. Starting with (8. 52) and using Taylor’s formula, (8.5),
and (1.2) we obtain, when n > 1,

o (k)() k
(6.9 =yt - 2 S ()
_ ¢n(x+%) _ ¢'n(t;'1+ 1\) _ n(t- 1r+ 2r)
and hence
(8.91) S by tc- 3 pnk(t—l—llri-z—r)k.
k=0 k=1 , ’

. This formula does not seem to be partlcularly useful when r # 1/2, but when
r=1/2 and n > 1 it shows that b, = 2k p and hence that (8.21) reduces to the
formula

n
1 ok
(8.92) Ont1 = (n+ 15! k¥132 pnksk‘

In [5] attention is confined to the case in which r = 1/2 and E,. reduces to the par-
ticular one of the methods E; used by Euler. The formula (8. 92) is derived and is
used to show that LD E /.
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9. INTEGRAL FORMULAS FOR L{u, + u, + -}

Let uy + u, + *»- be a given series and suppose there exists a positive constant
R, such that the series in

(9.1) ) = X k—k
k=0

converges when |t| < R,;. In case u,+ u, + **+ is evaluable L, this hypothesis holds
because (5.41) holds and the series in (9.1) converges when |t| < log 2. Let the
right member of the formula

© *
(9.11) £(t) = { >> Ellitk}

k=0

denote the analytic extension, along radial lines from the origin, of the function £(t)
defined by (9.1) when |t| < R,. Thus the statement that the right member of (9.11)
exists when t > 0 is equivalent to the statement that the function f(t) defined by
(9.1) when |t| < R, has an extension which is analytic over the real half-line t > 0
and which is therefore analytic over an open set containing this real half-line. The
hypothesis that the series in (9.1) converges when |t| < R, implies the existence of
a positive constant R such that the series in

(9.2) P = T = [log (1 - 2]

converges when |z| < R. (The logarithm in (9.2) is determined unambiguously by the
elementary formula -log (1 - 2z) = z + 22/2 + --..) Let the right member of the formula

oo *
(9.21) F(z) = { X1 *[-log (1 - z)]k}
k=0

denote the analytic extension, along radial lines from the origin, of the function F(z)
defined by (9.2) when |z| < R. The function F(z) defined by (9.2) when |z| <R is
analytic when |z| < R, and hence

F( )(0)

T nl

(9.3) F(z) = Y

n=0
when |z| < R. Differentiating (9.2) shows that the formula

(9.31) Fln)g) = Q )n Z Pnj Z _)—[ log (1 - z)]<-

is valid when n = 1. Suppose that (9.31) holds for a given n; considering the right
side of (9.31) as the product of (1 - z) ™ and another function, we differentiate this
product and use the recursion formula (2.2) to obtain the result of replacing n by
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n+ 1 in (9.31). Thus it is proved by induction that (9.31) holds when n> 1. From
(9.2), (9.31), and (9.3) we obtain

oo n < Us
(9.32) F(z) = uy+ 2, (Z P—H#J-)zn
n=1 ‘j=1

when |z| < R. It follows that

: ®© n pn.u.
(9.33) g F(z)dz = r{uo+ :/_:,1 (j§1 m-'—l-h )rn}

when 0 <r <R.

We now suppose that the given series u, + u, + *++ is evaluable L. Then, as we
see from (6.41), the series in the formal statement

1

(9.34) SF(Z) dz = u, + > § _Pnjlj
: n=1 j=1

must be convergent. This implies that the series in (9.32) must converge and de-
fine F(z) when |z| < 1, that the series in (9.33) must converge when 0 < r < 1, and
that, because of Abel’s theorem on power series, we can let r > 1 in (9.33) to obtain
(9.34). Thus, by use of (6.41), we see that the formula

(9.4) L{ > uk§ - EF(Z) dz

k=0

is valid whenever the series u, + u, + *+ is evaluable L, that is, whenever the left
member exists. Using (9.21), we see that the formula

*

(9.41) L{ > uk} = S{ > %[-log(l - z)]k} dz

k=0 k=0

is valid whenever the left member exists. Changing the variable of integration in
(9.41) by setting t = -log (1 - z) shows that the formula

oo = 0o *
-t i
(9.42) L{ > uk}= Se {}: E—!tk}dt
k=0 : k=0

is valid whenevey the left member exists. It would not be correct to remove the
star superscripts from the right members of (9.41) and (9.42); for while the hypo-
thesis that the left members of (9.41) and (9.42) exist implies that the series in
(9.32) converges when |z| < 1, it does not imply that the series in (9.2) converges
when |z| < 1, and it does not imply that the series in (9.1) converges when t > 0.

With the aid of (9.33), we see that the formula
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o0
o] ( n pn.u. ) o0 uk k *
N — -t N
(9.5) lgnnl{uﬁn;zl > —L—J—(n+1)! rn}_ j.e {): o1t } dt

j=1 0 k=0

is correct whenever the left member exists and whenever the right member exists.

10. THE SERIES B,/1+ B,/2 + -

Letting B,, B,, B,, *** denote the Bernoulli numbers for which B, =1, B, = -1/2,
B, =1/6, B, =0, ***, we show in this section that

(10.1) ‘L{Pl.x+%+%a+...}=y_1,

wheve y is Euler's constant, Starting with the familiar formula

o0

'Bkk
= Xt
k=0

(10.2)

which is valid when |t| < 27, and letting u, = Bk+l/(k + 1) and

I S | _1 1 -
(10.21) 0 =57 -5 F@ =3+ b

we see that (9.1) is valid when |t| < 27, that (9.32) is valid when |z| < 1, and that
(9.33) is valid when 0 < r < 1. If the given series is evaluable L, we can use (9.4)
to obtain

1
o By 1 1

(10.3) L{k% k+1}= S[E+log(1-Z)]dz_1’
= 0

and the desired conclusion (10.1) will follow from a known integral formula which
appears even in short tables of definite integrals.

It remains to be shown that the given series is evaluable L, and we do this by
means of some formulas obtained in [5]. Starting with the elementary formula

-t
1-e t t2
(10.9) £ =loartao

putting u = (-1) k/(k + 1) and t= -log(1 - z), and using formulas from (9.1) to (9.32)
gives

- * n pn-(--l)j n o0 * n ) n
(10.40) giogy = 1+ = (;‘}1 ) - z ( S-Zl pny (- dy ) 2.
n= = n= 2 j=

Using (1.2) and (1.3) then gives
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1

(10.42) TJg—(Zl—_—z) = -1+ 3 ( JY(I -y2-y)n-1- y)dy)i—r;.

n=1
4]

Since (9.32) is valid when uj= Bj;1/(+ 1), |z| <1, and F(z) is defined by (10.21),
we have also

43) Z z E ( n Bj+1 zn+l
(10.43 ogd-2 - " 1*3* Z 7y 1an') nl

n=1 ° j=1
when ]z| < 1. Comparing coefficients in (10.42) and (10.43), we obtain

1

n B.
i 52 DO -2 - y)-+(n -
(10.44) Z 711 < ljy(l Y@ -y -y)dy. \
3 0
Hence
n B:
j+l n!
(10.45) 0< El 7+ 1P <ae 1
and
= 1 2 By - 1
(10.46) RS UR Ea LA e
n= = =

As we see from (6.41), this implies that the given series is evaluable L, and (10.1)
is proved.

Starting with (10.42), transposing the first term on the right side, dividing by z,
and integrating over 0 < z < 1 gives the interesting formula

1

(10.5) y=3+ % (Tj—ﬁz%jyu - 9@ - ) -y) dy

]

for Euler’s constant.
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11. RELATIONS BETWEEN L. AND THE BOREL METHODS
A series uy + u; + **+ and its sequence s,;, s,, **- of partial sums are said to be

evaluable to B{s,, s,, --} by the Borel (or Borel exponential) method B if the series
in

, - k
(11.1) B{So, Sl, ...} = lim e Z e

t—o0 k=0 k
converges for each t > 0 and (11.1) holds. A series u, + u, + *** and its sequence

So, Sy, *** of partial sums are said to be evaluable to BI{y, + u, + -++} by the Borel
integral method BI if, in the right member of the statement

0
(11.2) BI{u0+ u, + -..} = J -tE k tkdt
!
k=0
0

the series converges for each t> 0 and the integral exists in the sense of
X

lim___ j .
0

In addition to these well-known methods which are treated in the book [4] of
Hardy, we introduce a generalized Borel integral method BI* which is related to BI
in the same way that a familiar generalized Abel method A* is related to the Abel
method A. We shall say that the series u, + u; + --+ is evaluable to BI*{u, + u, + -}
by the method BI* if

*

[ o]
© y
- k
(11.3) BI*{u, + u, + «++} = je t{ p -ﬁ—!tk} dt.
k=0
o

In (11.3), the star superscript has the same significance as in (9.11) and (9.5). For
validity of (11.3), it is necessary that the power series in (11.3) have a positive
radius of convergence, but it is not necessary that the radius of convergence be in-
finite. The formula (11.3) can be very convenient. If, for example, B,, B,, ** denote
the Bernoulli numbers, then (11.3), (10.2), and formulas found in tables of definite
integrals give

o o0 [>e)
- t t -t 2
11.31 BI* B = | et dt = dt- \tetdt = = -1.
(130 {350 of = [erame - e 6
0

The series B, + B, + *«+ is, however, not evaluable BI, because the series in (10. 2)
diverges when |t| > 27, For the exponentlal integral series (4.1), we see that the
formula
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(11.32) {Z (- 21;“ } j —t% = ( t) } dt = zgze;ttdt

k=0
0

is valid for each z for which the last integral exists, and hence for each z # 0 if we
allow Cauchy principal value integrals to occur in the definition (11.3) of BI*. There
is no z for which this series is evaluable BI.

From (9.5) and (11.3) we see that the formula

(11.4) BI*fug + u, + -} = lim§uo+ - ( > (p:i 13)! n}

r— n=1

is correct whenever at least one of the two members exists. The quantity in braces
in the right member of (11.4) is the Abel power series transform of the L series
transform of the series u, + u, + ---. Hence, in standard terminology, if the right
side of (11.4) exists then the series u, + u, + -+ is said to be evaluable AL to that
value. Thus the statement involving (11.4) means that BI* and AL are equivalent
methods for evaluation of series. Since A is regular, it follows that BI* D L. Since
BI* D BI, it follows from (11.4) that the formula

(11.5) BI{U0+ u, + -..} = h_m {uo.;. E ( o ::1:]1.] n}

is correct whenever the left side exists , and that BI ¢ AL. Since A is regular, it
follows from (11.5) that the formula

(11.6) BI{uo +u, + ---} = L{uo +u, + ...}

is valid whenever both members exist. This means that BI and L are consisitent,
and since BI D B it follows that B and L ave consistent.

Our work does not show whether the relations L. > B and L D BI are valid: In
[5], a formula equivalent to (11.5) is obtained and some conclusions are drawn from
it. There is a lack of precision in the treatment, and it is erroneously asserted that
B and BI are equivalent methods for evaluation of series. Correct relations between
B and BI are given in [4].
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